Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucl Med Biol ; 134-135: 108928, 2024.
Article in English | MEDLINE | ID: mdl-38776715

ABSTRACT

The radiotherapeutic 195mPt is among the most effective Auger electron emitters of the currently studied radionuclides that have a potential theranostic application in nuclear medicine. Production of 195mPt through double neuron capture of enriched 193Ir followed by ß--decay to the radioisotope of interest carried out at the research reactor IBR-2 is described. Because of the high radiation background, radiochemical purification procedure of 195mPt from bulk of iridium was needed to be developed and is detailed here as well. For the first time, cross section and resonance integral for the reaction 194Ir(n,γ)195mIr were determined. Resonance neutrons contribution was established to exceed that of thermal neutrons, and resonance integral for the reaction 194Ir(n,γ)195mIr is calculated to be 2900 b. Specific activity of 195mPt was estimated to reach a value of 38.7 GBq/(g Pt) at IBR-2 by the end of bombardment (EOB).


Subject(s)
Neutrons , Nuclear Reactors , Radiochemistry , Radioisotopes/chemistry
2.
Proc Natl Acad Sci U S A ; 106(50): 21039-44, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19948951

ABSTRACT

Single- and multiple-nanopore membranes are both highly interesting for biosensing and separation processes, as well as their ability to mimic biological membranes. The density of pores, their shape, and their surface chemistry are the key factors that determine membrane transport and separation capabilities. Here, we report silicon nitride (SiN) membranes with fully controlled porosity, pore geometry, and pore surface chemistry. An ultrathin freestanding SiN platform is described with conical or double-conical nanopores of diameters as small as several nanometers, prepared by the track-etching technique. This technique allows the membrane porosity to be tuned from one to billions of pores per square centimeter. We demonstrate the separation capabilities of these membranes by discrimination of dye and protein molecules based on their charge and size. This separation process is based on an electrostatic mechanism and operates in physiological electrolyte conditions. As we have also shown, the separation capabilities can be tuned by chemically modifying the pore walls. Compared with typical membranes with cylindrical pores, the conical and double-conical pores reported here allow for higher fluxes, a critical advantage in separation applications. In addition, the conical pore shape results in a shorter effective length, which gives advantages for single biomolecule detection applications such as nanopore-based DNA analysis.


Subject(s)
Filtration/instrumentation , Membranes, Artificial , Silicon Compounds , Coloring Agents/isolation & purification , DNA/isolation & purification , Porosity , Proteins/isolation & purification , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...