Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Periodontal Res ; 59(2): 280-288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226427

ABSTRACT

OBJECTIVE: The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA: Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS: We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 µg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1ß, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS: We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1ß (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS: Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.


Subject(s)
Alveolar Bone Loss , Periodontitis , Rats , Male , Animals , Oxytocin/therapeutic use , Oxytocin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Receptors, Oxytocin/metabolism , Disease Models, Animal , Periodontitis/metabolism , Gingiva/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/etiology , Alveolar Process/metabolism , Inflammation Mediators/metabolism
2.
J Clin Exp Dent ; 12(12): e1201-e1205, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33282143

ABSTRACT

Mucosal ulcerations are an oral complication that can often affect kidney transplant patients, mostly due to the effect of immunosuppression. It has been frequently reported drug-induced ulceration or lymphoproliferative disorders with buccal manifestations however, some unusual disorders should also be considered, such as fungal infections, viruses, as well as opportunistic infection by other microorganisms. Determining the etiology and differential diagnose from other causes of mouth ulcers is very important for the adequate treatment of said lesion. Dental health of patients should also be taken into the account prior to the transplant surgery, since periodontal pockets are the main niche of microbial reservoir. Moreover, mixed with oral microbiota, parasites such as Trichomonas spp. can be found in the dental plaque of patients with periodontal disease. Particularly, Trichomonas spp. are anaerobic motile-flagellated protozoa that can both induce tissue damage and exacerbate preexistent injuries in vaginal and oral mucosa. Parasitic infection in the oral cavity has not been well studied and it is thought to be underreported. In the present study we report the first case in literature of presence of Trichomonas spp. as a potential etiological factor of the oral ulcerations of a kidney transplanted patient that remitted after antibiotic treatment. Key words:Immunosuppression, protozoan, buccal lesion, oral mucosa, kidney transplant.

3.
Eur J Neurosci ; 52(3): 2995-3001, 2020 08.
Article in English | MEDLINE | ID: mdl-32372526

ABSTRACT

GnRH neuron activity is under the influence of multiple stimuli, including those coming from the endocannabinoid and the immune systems. Since it has been previously suggested that some of the main elements controlling the GnRH pulse generator possess the TRPV1 receptor, the aim of the present study was to evaluate the participation of the hypothalamic TRPV1, through its pharmacological blockade, in the activity of the hypothalamic-pituitary-testicular axis in male rats under basal or acute inflammatory conditions. Our hypothesis was based on the idea that the hypothalamic TRPV1 participates in the synthesis of the main neuromodulatory signals controlling GnRH, and therefore the reproductive axis. Our results showed that the hypothalamic TRPV1 blockade induced pro-inflammatory effects by increasing Tnfα and Il-1ß mRNA hypothalamic levels and inhibited the reproductive axis by affecting Gnrh, Kiss1 and Rfrp3 mRNA levels and decreasing plasma levels of luteinizing hormone and testosterone under basal conditions, without significant additive effects in rats exposed to systemic LPS. Altogether, these results suggest that the hypothalamic TRPV1 receptor participates in the regulation of the GnRH system, probably by modulating immune-dependent mechanisms.


Subject(s)
Gonadotropin-Releasing Hormone , Luteinizing Hormone , Animals , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Male , Neurons/metabolism , Rats , TRPV Cation Channels/genetics , Testosterone
4.
Nutr Cancer ; 69(5): 780-790, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28682138

ABSTRACT

Submandibular gland (SMG) is one of the major salivary glands, and is formed by acinar cells that are conveyed to the oral cavity by a duct system. We had previously reported that T2R receptors that were originally identified in gustatory tissues were also present in murine SMG. The addition of bitter compounds to the gland reduced nitric oxide production and downregulated amylase secretion. In this work, we investigated the effect of two different bitter compounds namely denatonium and naringenin on tumor progression as well as the presence of T2R in SCA-9 cells derived from a murine tumor induced in SMG. Both compounds increased tumor cell proliferation in bi- and three-dimensional cultures. These effects were mediated by the activation of arginase and the inhibition of nitric oxide synthase. Denatonium and naringenin also increased vascular endothelial growth factor-A expression via arginase and tumor neovascularization in vivo. T2R6 and T2R4 were identified in SCA-9 cells by immunostaining. Also, Gi and Ggust proteins, which usually couple to T2R receptors, are expressed in these cells. Finally, we demonstrated for the first time that bitter compounds can exert pro-tumor actions that should be taken into account as side effects when they are used as nutraceuticals.


Subject(s)
Arginase/metabolism , Flavanones/pharmacology , Neovascularization, Pathologic/chemically induced , Quaternary Ammonium Compounds/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , GTP-Binding Proteins/metabolism , Male , Mice , Nitric Oxide/metabolism , Receptors, G-Protein-Coupled/metabolism , Urea/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
Reprod Fertil Dev ; 29(11): 2112-2126, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28376314

ABSTRACT

Lysophosphatidic acid (LPA) affects several female reproductive functions through G-protein-coupled receptors. LPA contributes to embryo implantation via the lysophospholipid LPA3 receptor. In the present study we investigated the participation of endogenous LPA signalling through the LPA3 receptor in vascularisation and decidualisation, two crucial events at the maternal-fetal interface. Pregnant rats were treated with diacylglycerol pyrophosphate (DGPP), a highly selective antagonist of LPA3 receptors, on Day 5 of gestation. Pregnant rats received intrauterine (i.u.) injections of single doses of DGPP (0.1mgkg-1) in a total volume of 2µL in the left horn (treated horn) in the morning of GD5. DGPP treatment produced aberrant embryo spacing and increased embryo resorption. The LPA3 receptor antagonist decreased the cross-sectional length of the uterine and arcuate arteries and induced histological anomalies in the decidua and placentas. Marked haemorrhagic processes, infiltration of immune cells and tissue disorganisation were observed in decidual and placental tissues from sites of resorption. The mRNA expression of three vascularisation markers, namely interleukin 10 (Il10), vascular endothelial growth factor (Vegfa) and vascular endothelial growth factor receptor 1 (Vegfr1), was reduced at sites of resorption from Day 8. The results show that the disruption of endogenous LPA signalling by blocking the LPA3 receptor modified the development of uterine vessels with consequences in the formation of the decidua and placenta and in the growth of embryos.


Subject(s)
Decidua/metabolism , Lysophospholipids/metabolism , Neovascularization, Physiologic/physiology , Placenta/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction/physiology , Animals , Decidua/drug effects , Diphosphates/pharmacology , Embryo Implantation/physiology , Female , Glycerol/analogs & derivatives , Glycerol/pharmacology , Interleukin-10/metabolism , Neovascularization, Physiologic/drug effects , Placenta/blood supply , Placenta/drug effects , Pregnancy , Rats , Receptors, Lysophosphatidic Acid/agonists , Signal Transduction/drug effects , Uterine Artery/drug effects , Uterine Artery/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
6.
Front Immunol ; 8: 1738, 2017.
Article in English | MEDLINE | ID: mdl-29312293

ABSTRACT

Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.

7.
J Cell Physiol ; 228(7): 1584-93, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23335284

ABSTRACT

Macrophages (Mps) can exert the defense against invading pathogens. During sepsis, bacterial lipopolisaccharide (LPS) activates the production of inflammatory mediators by Mps. Nitric oxide synthase (NOS) derived-nitric oxide (NO) is one of them. Besides, Mps may produce pro-angiogenic molecules such as vascular endothelial growth factor-A (VEGF-A) and metalloproteinases (MMPs). The mechanisms involved in the cardiac neovascular response by Mps during sepsis are not completely known. We investigated the ability of LPS-treated Mps from septic mice to modulate the behavior of cardiac cells as producers of NO and angiogenic molecules. In vivo LPS treatment (0.1 mg/mouse) increased NO production more than fourfold and induced de novo NOS2 expression in Mps. Immunoblotting assays also showed an induction in VEGF-A and MMP-9 expression in lysates obtained from LPS-treated Mps, and MMP-9 activity was detected by zymography in cell supernatants. LPS-activated Mps co-cultured with normal heart induced the expression of CD31 and VEGF-A in heart homogenates and increased MMP-9 activity in the supernatants. By immunohistochemistry, we detected new blood vessel formation in hearts cultured with LPS treated Mps. When LPS-stimulated Mps were co-cultured with isolated cardiomyocytes in a transwell assay, the expression of NOS2, VEGF-A and MMP-9 was induced in cardiac cells. In addition, MMP-9 activity was up-regulated in the supernatant of cardiomyocytes. The latter was due to NOS2 induction in Mps from in vivo LPS-treated mice. In conclusion LPS-treated Mps are inducers of inflammatory/angiogenic mediators in cardiac cells, which could be triggering neovascularization, as an attempt to improve cardiac performance in sepsis.


Subject(s)
Macrophages, Peritoneal/metabolism , Myocardium/metabolism , Neovascularization, Pathologic/metabolism , Nitric Oxide Synthase/metabolism , Sepsis/metabolism , Animals , Female , Immunity, Innate , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Myocardium/immunology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/immunology , Sepsis/complications , Sepsis/immunology , Vascular Endothelial Growth Factor A/metabolism
8.
Anticancer Agents Med Chem ; 13(8): 1273-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23293886

ABSTRACT

Muscarinic acetylcholine receptors (mAChR) are expressed in cells without nervous origin. mAChR are up-regulated in tumor cells and their stimulation can modulate tumor growth. In this work we investigated the ability of mAChR activation to induce tumor cell death. We studied the action of a combination of low doses of the muscarinic agonist carbachol plus paclitaxel, a chemotherapeutic agent frequently used in breast cancer treatment, in terms of effectiveness. Long term treatment with carbachol exerted anti-proliferative actions on LM2 and LM3 murine mammary adenocarcinoma cells, similarly to paclitaxel. The combination of carbachol with paclitaxel at submaximal concentrations, added during 20 h decreased tumor cell proliferation in a more potent manner than each drug added separately. This effect was reverted by the muscarinic antagonist atropine, and was due to a potentiation of tumor cell apoptosis tested by TUNEL assay. This treatment did not affect the proliferation of the non tumorigenic mammary cell line NMuMG. In conclusion, the combination of a muscarinic agonist plus paclitaxel should be tested as a useful therapeutic tool in breast cancer treatment.


Subject(s)
Adenocarcinoma/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/pathology , Carbachol/pharmacology , Muscarinic Agonists/pharmacology , Paclitaxel/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , Humans , Mice
9.
J Bone Miner Metab ; 29(5): 526-34, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21327886

ABSTRACT

Aluminum (Al) is an element to which humans are widely exposed. Chronic administration induces a negative effect on bone tissue, affecting collagen synthesis and matrix mineralization. Its toxic effects are cumulative. Hypobaric hypoxia induces stress erythropoiesis, leading to hypertrophy of the erythropoietic marrow affecting the bone. This study was designed to evaluate the risk of Al bone toxicity among immature rats maintained at simulated high altitude (SHA) by mechanical assessment of stiffness and strength, calculation of some indicators of bone material and geometrical properties, as well as blood determinations. Forty growing rats were divided into control and experimental groups whether injected with vehicle or Al, as Al(OH)(3), three times a week for 3 months. Half of each group was exposed to hypobaric conditions (HX) by placing the animals in a SHA chamber. Both treatments negatively affected structural properties of bones, decreasing the maximum capacity to withstand load, the limit elastic load and the capacity of absorbing energy in elastic conditions. Al administration significantly depressed mandible structural stiffness, although diaphyseal stiffness was not modified. Indicators of bone material intrinsic properties, elastic modulus and stress, were significantly reduced by Al or HX. Treatments increased the diaphyseal sectional bending moment of inertia, suggesting that femur, but not mandible, compensates for the decline in the material properties with an adaptation of its architecture to maintain structural properties. The different biomechanical behaviors between the two kinds of bone are probably due to their different embryological origin and specific functions, as mandible is a bone that adjusts its strength to biting forces, whereas femur is designed to support load.


Subject(s)
Altitude , Aluminum/toxicity , Bone and Bones/drug effects , Bone and Bones/physiology , Animals , Anthropometry , Biomechanical Phenomena/drug effects , Bone and Bones/metabolism , Female , Femur/anatomy & histology , Femur/drug effects , Femur/physiology , Mandible/anatomy & histology , Mandible/drug effects , Mandible/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...