Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 27(10): 1701-1711, 2021 10.
Article in English | MEDLINE | ID: mdl-34608334

ABSTRACT

Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300-1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.


Subject(s)
Biological Products/adverse effects , Genetic Therapy/adverse effects , Recombinant Fusion Proteins/adverse effects , Spinal Muscular Atrophies of Childhood/therapy , Survival of Motor Neuron 1 Protein/genetics , Autopsy , Biological Products/administration & dosage , DNA/genetics , Female , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Humans , Infant , Infant, Newborn , Male , Motor Neurons/drug effects , Motor Neurons/pathology , RNA, Messenger/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/mortality , Spinal Muscular Atrophies of Childhood/pathology , Tissue Distribution/drug effects
2.
Transl Oncol ; 4(4): 249-57, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21804921

ABSTRACT

CVX-045 is produced by covalently attaching a thrombospondin 1 (TSP-1) mimetic comprising a peptidic sequence and a linker to the Fab binding site of a proprietary scaffold antibody. CVX-045 possesses the potency of the TSP-1-derived peptide, along with the advantageous pharmacokinetics of an antibody. Antitumor activity of CVX-045 was evaluated in human xenograft models alone and in combination with standard chemotherapies and targeted molecules. In A549 and A431 xenograft models, CVX-045 demonstrated significant (P < .05) antiangiogenic activity, reducing tumor microvessel density and increasing the levels of necrosis within treated tumors. In an HT-29 xenograft model, CVX-045 in combination with 5-fluorouracil significantly (P < .01) decreased tumor growth rate compared with vehicle, CVX-045, or 5-fluorouracil alone. Cotreatment of CVX-045 plus CPT-11 delayed progression of tumor growth from day 28 to 60. In contrast CVX-045 alone treatment did not delay the progression of tumor growth, and CPT-11 alone delayed progression of tumor growth to day 39. Cotreatment of CVX-045 with sunitinib extended the time to reach tumor load from day 26 to 40. In summary, CVX-045 exhibits significant antiangiogenic activity in several tumor models and enhances antitumor activity in combination with chemotherapy or targeted therapies. These data suggest future avenues for effective combination therapy in treating solid tumors. CVX-045 has recently completed a phase 1 trial in solid tumors where it has been well tolerated.

3.
Clin Cancer Res ; 17(5): 1001-11, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21233403

ABSTRACT

PURPOSE: Angiopoietin-1 (Ang1) plays a key role in maintaining stable vasculature, whereas in a tumor Ang2 antagonizes Ang1's function and promotes the initiation of the angiogenic switch. Specifically targeting Ang2 is a promising anticancer strategy. Here we describe the development and characterization of a new class of biotherapeutics referred to as CovX-Bodies, which are created by chemical fusion of a peptide and a carrier antibody scaffold. EXPERIMENTAL DESIGN: Various linker tethering sites on peptides were examined for their effect on CovX-Body in vitro potency and pharmacokinetics. Ang2 CovX-Bodies with low nmol/L IC(50)s and significantly improved pharmacokinetics were tested in tumor xenograft studies alone or in combination with standard of care agents. Tumor samples were analyzed for target engagement, via Ang2 protein level, CD31-positive tumor vasculature, and Tie2 expressing monocyte penetration. RESULTS: Bivalent Ang2 CovX-Bodies selectively block the Ang2-Tie2 interaction (IC(50) < 1 nmol/L) with dramatically improved pharmacokinetics (T(½) > 100 hours). Using a staged Colo-205 xenograft model, significant tumor growth inhibition (TGI) was observed (40%-63%, P < 0.01). Ang2 protein levels were reduced by approximately 50% inside tumors (P < 0.01), whereas tumor microvessel density (P < 0.01) and intratumor proangiogenic Tie2(+)CD11b(+) cells (P < 0.05) were significantly reduced. When combined with sunitinib, sorafenib, bevacizumab, irinotecan, or docetaxel, Ang2 CovX-Bodies produced even greater efficacy (∼80% TGI, P < 0.01). CONCLUSION: CovX-Bodies provide an elegant solution to overcome the pharmacokinetic-pharmacodynamic problems of peptides. Long-acting Ang2 specific CovX-Bodies will be useful as single agents and in combination with standard-of-care agents.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Angiopoietin-2/antagonists & inhibitors , Immunoconjugates/pharmacology , Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/metabolism , Peptides/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/therapeutic use , Angiopoietin-2/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD11b Antigen/analysis , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Macrophages/drug effects , Male , Mice , Monocytes , Neoplasms, Experimental/pathology , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Rats , Rats, Sprague-Dawley , Receptor Protein-Tyrosine Kinases/genetics , Receptor, TIE-2 , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...