Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266862

ABSTRACT

HIV causes neurodegeneration and dementia in AIDS patients, but its function in milder cognitive impairments in virologically suppressed patients on antiretroviral therapy is unknown. Such patients are immunocompetent, have low peripheral and brain HIV burdens, and show minimal brain neuropathology. Using the model of HIV-related memory impairment in EcoHIV-infected conventional mice, we investigated the neurobiological and cognitive consequences of efficient EcoHIV expression in the mouse brain after intracerebral infection. HIV integrated and persisted in an expressed state in brain tissue, was detectable in brain monocytic cells, and caused neuroinflammatory responses and lasting spatial, working, and associative memory impairment. Systemic antiretroviral treatment prevented direct brain infection and memory dysfunction indicating the requirement for HIV expression in the brain for disease. Similarly inoculated murine leukemia virus used as a control replicated in mouse brain but not in monocytic cells and was cognitively benign, linking the disease to HIV-specific functions. Memory impairment correlated in real time with hippocampal dysfunction shown by defective long-term potentiation in hippocampal slices ex vivo and with diffuse synaptodendritic injury in the hippocampus reflected in significant reduction in microtubule-associated protein 2 and synapsin II staining. In contrast, there was no evidence of overt neuronal loss in this region as determined by neuron-specific nuclear protein quantification, TUNEL assay, and histological observations. Our results reveal a novel capacity of HIV to induce neuronal dysfunction and memory impairment independent of neurotoxicity, distinct from the neurotoxicity of HIV infection in dementia.IMPORTANCE HIV neuropathogenesis has been attributed in large measure to neurotoxicity of viral proteins and inflammatory factors produced by infected monocytic cells in the brain. We show here that HIV expression in mouse brain causes lasting memory impairment by a mechanism involving injury to hippocampal synaptodendritic arbors and neuronal function but not overt neuronal loss in the region. Our results mirror the observation of minimal neurodegeneration in cognitively impaired HIV patients on antiretroviral therapy and demonstrate that HIV is nonneurotoxic in certain brain abnormalities that it causes. If neurons comprising the cognition-related networks survive HIV insult, at least for some time, there is a window of opportunity for disease treatment.


Subject(s)
AIDS Dementia Complex/physiopathology , Cognitive Dysfunction/physiopathology , Hippocampus/pathology , Hippocampus/virology , Memory Disorders/complications , Memory Disorders/physiopathology , Animals , Behavior, Animal , Disease Models, Animal , Male , Mice , Viral Load
2.
J Neuropathol Exp Neurol ; 73(1): 59-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24335529

ABSTRACT

The roles of Type I interferon (IFN) in human immunodeficiency virus Type 1 (HIV-1) neuropathogenesis are poorly understood; both protective and deleterious effects of IFN signaling have been described. We used genetically modified mice deficient in the Type I IFN receptor (IFNRKO) to analyze the progress of HIV-1 brain infection and neuropathogenesis in the absence of IFN signaling. IFNRKO and wild-type (WT) mice on the 129xSv/Ev or C57BL/6 strain backgrounds were infected systemically with EcoHIV, a chimeric HIV-1 that productively infects mice. IFNRKO mice showed higher HIV-1 expression in spleen and peritoneal macrophages and greater virus infiltration into the brain compared to WT mice. Neuropathogenesis was studied by histopathological, immunohistochemical, immunofluorescence, and polymerase chain reaction analyses of brain tissues after the virus was inoculated into the brain by stereotaxic intracerebral injection. Both IFNRKO and WT mice showed readily detectable HIV-1 and brain lesions, including microglial activation, astrocytosis, and increased expression of genes coding for inflammatory cytokines and chemokines typical of human HIV-1 brain disease. Parameters of HIV-1 neuropathogenesis, including HIV-1 expression in microglia/macrophages, were significantly greater in IFNRKO than in WT mice. Our results show unequivocally that Type I IFN signaling and responses limit HIV-1 infection and pathogenesis in the brains of mice.


Subject(s)
Brain/metabolism , Brain/pathology , HIV Infections/metabolism , HIV Infections/pathology , HIV-1/metabolism , Interferon Type I/deficiency , Animals , Gene Expression Regulation, Viral , HIV Infections/genetics , HIV-1/genetics , Interferon Type I/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...