Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(9): 3997-4004, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35201769

ABSTRACT

Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.


Subject(s)
Lignin , Calibration , Least-Squares Analysis , Magnetic Resonance Spectroscopy , Molecular Weight
2.
J Pharm Biomed Anal ; 212: 114649, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35158188

ABSTRACT

Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin's molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6% and 12.9% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin's molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems.


Subject(s)
Lignin , Poaceae , Lignin/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Molecular Weight , Poaceae/chemistry
3.
ACS Omega ; 6(44): 29516-29524, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34778623

ABSTRACT

The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (M w and M n) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7-9 and 14-16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.

4.
Biomacromolecules ; 21(5): 1929-1942, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32186856

ABSTRACT

A catalyst-free organosolv pulping process was applied to cup plant (Silphium perfoliatum, S), Miscanthus grass (Miscanthus x giganteus, M), and the Paulownia tree (Paulownia tomentosa, P), resulting in high-purity lignins with no signals for cellulose, hemicellulose, or other impurities in two-dimensional heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectra. Different biomass particle sizes used for the organosolv pulping (1.6-2.0 mm (1); 0.5-1.0 mm (2); <0.25 mm (3)) influenced the molecular weight and chemical structure of the isolated lignins. Principal component analysis (PCA) of 1H NMR data revealed a high intergroup variance of Miscanthus and Paulownia lignins, separating the small particle fraction from the larger ones. Furthermore, monolignol ratios identified via HSQC NMR differ significantly: Miscanthus lignins were composed of all three monolignols (guaiacyl (G), p-hydroxyphenyl (H), syringyl (S)), while for Paulownia and Silphium lignins only G and S units were observed (except for P3).


Subject(s)
Lignin , Poaceae , Biomass , Cellulose , Spectroscopy, Fourier Transform Infrared
5.
RSC Adv ; 10(18): 10740-10751, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-35492943

ABSTRACT

Miscanthus crops possess very attractive properties such as high photosynthesis yield and carbon fixation rate. Because of these properties, it is currently considered for use in second-generation biorefineries. Here we analyze the differences in chemical composition between M. x giganteus, a commonly studied Miscanthus genotype, and M. nagara, which is relatively understudied but has useful properties such as increased frost resistance and higher stem stability. Samples of M. x giganteus (Gig35) and M. nagara (NagG10) have been separated by plant portion (leaves and stems) in order to isolate the corresponding lignins. The organosolv process was used for biomass pulping (80% ethanol solution, 170 °C, 15 bar). Biomass composition and lignin structure analysis were performed using composition analysis, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), size exclusion chromatography (SEC) and pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS) to determine the 3D structure of the isolated lignins, monolignol ratio and most abundant linkages depending on genotype and harvesting season. SEC data showed significant differences in the molecular weight and polydispersity indices for stem versus leaf-derived lignins. Py-GC/MS and hetero-nuclear single quantum correlation (HSQC) NMR revealed different monolignol compositions for the two genotypes (Gig35, NagG10). The monolignol ratio is slightly influenced by the time of harvest: stem-derived lignins of M. nagara showed increasing H and decreasing G unit content over the studied harvesting period (December-April).

6.
Polymers (Basel) ; 11(4)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30979077

ABSTRACT

The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0-7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.

7.
Int J Mol Sci ; 20(5)2019 Mar 09.
Article in English | MEDLINE | ID: mdl-30857288

ABSTRACT

As a renewable, Miscanthus offers numerous advantages such as high photosynthesis activity (as a C4 plant) and an exceptional CO2 fixation rate. These properties make Miscanthus very attractive for industrial exploitation, such as lignin generation. In this paper, we present a systematic study analyzing the correlation of the lignin structure with the Miscanthus genotype and plant portion (stem versus leaf). Specifically, the ratio of the three monolignols and corresponding building blocks as well as the linkages formed between the units have been studied. The lignin amount has been determined for M. x giganteus (Gig17, Gig34, Gig35), M. nagara (NagG10), M. sinensis (Sin2), and M. robustus (Rob4) harvested at different time points (September, December, and April). The influence of the Miscanthus genotype and plant component (leaf vs. stem) has been studied to develop corresponding structure-property relationships (i.e., correlations in molecular weight, polydispersity, and decomposition temperature). Lignin isolation was performed using non-catalyzed organosolv pulping and the structure analysis includes compositional analysis, Fourier transform infradred (FTIR), ultraviolet/visible (UV-Vis), hetero-nuclear single quantum correlation nuclear magnetic resonsnce (HSQC-NMR), thermogravimetric analysis (TGA), and pyrolysis gaschromatography/mass spectrometry (GC/MS). Structural differences were found for stem and leaf-derived lignins. Compared to beech wood lignins, Miscanthus lignins possess lower molecular weight and narrow polydispersities (<1.5 Miscanthus vs. >2.5 beech) corresponding to improved homogeneity. In addition to conventional univariate analysis of FTIR spectra, multivariate chemometrics revealed distinct differences for aromatic in-plane deformations of stem versus leaf-derived lignins. These results emphasize the potential of Miscanthus as a low-input resource and a Miscanthus-derived lignin as promising agricultural feedstock.


Subject(s)
Lignin/analysis , Plant Leaves/chemistry , Plant Stems/chemistry , Poaceae/chemistry , Biomass , Chromatography, Gel/methods , Gas Chromatography-Mass Spectrometry/methods , Lignin/chemistry , Magnetic Resonance Spectroscopy/methods , Principal Component Analysis , Spectrophotometry, Ultraviolet/methods , Spectroscopy, Fourier Transform Infrared/methods , Thermogravimetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...