Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717397

ABSTRACT

The metapopulation network model is a mathematical framework used to study the spatial spread of epidemics with individuals' mobility. In this paper, we develop a time-varying network model in which the activity of a population is correlated with its attractiveness in mobility. By studying the spreading dynamics of the SIR (susceptible-infectious-recovered)-type disease in different correlated networks based on the proposed model, we theoretically derive the mobility threshold and numerically observe that increasing the correction between activity and attractiveness results in a reduced mobility threshold but suppresses the fraction of infected subpopulations. It also introduces greater heterogeneity in the spatial distribution of infected individuals. Additionally, we investigate the impact of nonpharmaceutical interventions on the spread of epidemics in different correlation networks. Our results show that the simultaneous implementation of self-isolation and self-protection is more effective in negatively correlated networks than that in positively correlated or non-correlated networks. Both self-isolation and self-protection strategies enhance the mobility threshold and, thus, slow down the spread of the epidemic. However, the effectiveness of each strategy in reducing the fraction of infected subpopulations varies in different correlated networks. Self-protection is more effective in positively correlated networks, whereas self-isolation is more effective in negatively correlated networks. Our study will provide insights into epidemic prevention and control in large-scale time-varying metapopulation networks.


Subject(s)
Epidemics , Humans , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Time Factors , Population Dynamics
2.
Proc Natl Acad Sci U S A ; 120(51): e2308820120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091288

ABSTRACT

In an ecosystem, environmental changes as a result of natural and human processes can cause some key parameters of the system to change with time. Depending on how fast such a parameter changes, a tipping point can occur. Existing works on rate-induced tipping, or R-tipping, offered a theoretical way to study this phenomenon but from a local dynamical point of view, revealing, e.g., the existence of a critical rate for some specific initial condition above which a tipping point will occur. As ecosystems are subject to constant disturbances and can drift away from their equilibrium point, it is necessary to study R-tipping from a global perspective in terms of the initial conditions in the entire relevant phase space region. In particular, we introduce the notion of the probability of R-tipping defined for initial conditions taken from the whole relevant phase space. Using a number of real-world, complex mutualistic networks as a paradigm, we find a scaling law between this probability and the rate of parameter change and provide a geometric theory to explain the law. The real-world implication is that even a slow parameter change can lead to a system collapse with catastrophic consequences. In fact, to mitigate the environmental changes by merely slowing down the parameter drift may not always be effective: Only when the rate of parameter change is reduced to practically zero would the tipping be avoided. Our global dynamics approach offers a more complete and physically meaningful way to understand the important phenomenon of R-tipping.

3.
Sci Rep ; 12(1): 22113, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543906

ABSTRACT

In this study, the non-linear dynamics of Taylor-Couette flow in a very small-aspect-ratio wide-gap annulus in a counter-rotating regime under the influence of radial through-flow are investigated by solving its full three-dimensional Navier-Stokes equations. Depending on the intensity of the radial flow, either an axisymmetric (pure [Formula: see text] mode) pulsating flow structure or an axisymmetric axially propagating vortex will appear subcritical, i.e. below the centrifugal instability threshold of the circular Couette flow. We show that the propagating vortices can be stably existed in two separate parameter regions, which feature different underlying dynamics. Although in one regime, the flow appears only as a limit cycle solution upon which saddle-node-invariant-circle bifurcation occurs, but in the other regime, it shows more complex dynamics with richer Hopf bifurcation sequences. That is, by presence of incommensurate frequencies, it can be appeared as 1-, 2- and 3-torus solutions, which is known as the Ruelle-Takens-Newhouse route to chaos. Therefore, the observed bifurcation scenario is the Ruelle-Takens-Newhouse route to chaos and the period doubling bifurcation, which exhibit rich and complex dynamics.

4.
Ann Dermatol ; 34(1): 40-45, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35221594

ABSTRACT

BACKGROUND: Although particulate matter likely provokes inflammatory reactions in those with chronic skin disorders like atopic dermatitis, no study has examined the relationship between particulate matter and psoriasis exacerbation. OBJECTIVE: This study evaluated possible associations between particulate matter and hospital visits for psoriasis patients in 7 major cities in South Korea. METHODS: We investigated the relationship between psoriasis and particulate matter. To do this, we used psoriasis patient data from the Korean National Health Insurance Service database. In addition, PM10 and PM2.5 concentration data spanning a 3-year time frame were obtained from the Korea Environment Corporation. RESULTS: A pattern analysis generated by the sample cross-correlation function and time series regression showed a correlation between particulate matter concentration and the number of hospital visits by psoriasis patients. However, the prewhitening method, which minimizes the effects of other variables besides particulate matter, revealed no correlation between the two. CONCLUSION: This study suggests that particulate matter has no impact on hospital visit frequency among psoriasis patients in South Korean urban areas.

5.
Sci Rep ; 11(1): 17122, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429459

ABSTRACT

A vertical annular configuration with differently heated cylindrical surfaces and horizontal adiabatic boundaries is systematically studied in view to their industrial applications. In this paper, we investigate the effects of conjugate buoyant heat transport in water based nanofluids with different nanoparticles such as alumina, titania or copper, and is filled in the enclosed annular gap. The annulus space is formed by a thick inner cylinder having a uniform high temperature, an exterior cylindrical tube with a constant lower temperature, and thermally insulated upper and lower surfaces. By investigating heat transport for broad spectrum of Rayleigh number, solid wall thickness, thermal conductivity ratio and nanoparticle volume fraction, we found that the influence of wall thickness on thermal dissipation rate along wall and interface greatly depends on conductivity ratio and vice-versa. In particular, we uncover that the choice of nanoparticle in a nanofluid and its concentration are key factors in enhancing the thermal transport along the interface. Specially, copper based nanofluids produces higher heat transport among other nanoparticles, and for the range of nanoparticle concentration chosen in this analysis, enhanced thermal dissipation along the interface has been detected as nanoparticle volume fraction is increased. Our results are applicable to choose nanofluids along with other critical parameters for the desired heat transport.

6.
Sci Rep ; 9(1): 15438, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31659226

ABSTRACT

In this paper we investigate the effects of an externally imposed axial mass flux (axial pressure gradient, axial through flow) on ferrofluidic Taylor-Couette flow under the influence of either an axial or a transverse magnetic field. Without an imposed axial through flow, due to the symmetry-conserving axial field and the symmetry-breaking transverse field, it gives rise to various vortex flows in ferrofluidic Taylor-Couette flow such as wavy Taylor vortex flow (wTVF), wavy spiral vortex flow (wSPI) and wavy vortex flows ([Formula: see text] and [Formula: see text]), which are typically produced by a nonlinear interaction of rotational, shear and magnetic instabilities. In addition, when an axial through flow is imposed to a ferrofluidic Taylor-Couette flow in the presence of either an axial or a transverse magnetic field, previously unknown new helical vortex structures are observed. In particular, we uncover 'modulated Mixed-Cross-Spirals' with a combination of at least three different dominant azimuthal wavenumbers. Emergence of such new flow states indicates richer but potentially more controllable dynamics in ferrofluidic flows, i.e., an imposed axial through flow will be a new controllable factor/parameter in applications of a ferrofluidic and magnetic flows flow.

7.
Chaos ; 28(11): 113110, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501221

ABSTRACT

Cyclically competition models have been successful to gain an insight of biodiversity mechanism in ecosystems. There are, however, still limitations to elucidate complex phenomena arising in real competition. In this paper, we report that a multistability occurs in a simple rock-paper-scissor cyclically competition model by assuming that intraspecific competition depends on the logistic growth of each species density. This complex stability is absent in any cyclically competition model, and we investigate how the proposed intraspecific competition affects biodiversity in the existing society of three species through macroscopic and microscopic approaches. When the system is multistable, we show basins of the asymptotically stable heteroclinic cycle and stable attractors to demonstrate how the survival state is determined by initial densities of three species. Also, we find that the multistability is associated with a subcritical Hopf bifurcation. This surprising finding will give an opportunity to interpret rich dynamical phenomena in ecosystems which may occur in cyclic competition systems with different types of interactions.

8.
Chaos ; 27(11): 113112, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195302

ABSTRACT

We investigate transient behaviors induced by magnetic fields on the dynamics of the flow of a ferrofluid in the gap between two concentric, independently rotating cylinders. Without applying any magnetic fields, we uncover emergence of flow states constituted by a combination of a localized spiral state in the top and bottom of the annulus and different multi-cell flow states with toroidally closed vortices in the interior of the bulk. However, when a magnetic field is presented, we observe the transient behaviors between multi-cell states passing through two critical thresholds in a strength of an axial (transverse) magnetic field. Before the first critical threshold of a magnetic field strength, multi-stable states with different number of cells could be observed. After the first critical threshold, we find the transient behavior between the three- and two-cell flow states. For more strength of magnetic field or after the second critical threshold, we discover that multi-cell states are disappeared and a localized spiral state remains to be stimulated. The studied transient behavior could be understood by the investigation of various quantities including a modal kinetic energy, a mode amplitude of the radial velocity, wavenumber, angular momentum, and torque. In addition, the emergence of new flow states and the transient behavior between their states in ferrofluidic flows indicate that richer and potentially controllable dynamics through magnetic fields could be possible in ferrofluic flow.

9.
Phys Rev E ; 96(2-1): 022323, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950650

ABSTRACT

We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in spreading processes in networks. While the edges determine the connections among the nodes, their specific role in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for spreading from i to j and from j to i. The key issue is whether node j, after infected by i through the edge, would reach out to other nodes that i itself could not reach directly. It becomes necessary to invoke two unequal weights w_{ij} and w_{ji} characterizing the importance of an edge according to the neighborhoods of nodes i and j. The total asymmetric directional weights originating from a node leads to a novel measure s_{i}, which quantifies the impact of the node in spreading processes. An s-shell decomposition scheme further assigns an s-shell index or weighted coreness to the nodes. The effectiveness and accuracy of rankings based on s_{i} and the weighted coreness are demonstrated by applying them to nine real-world networks. Results show that they generally outperform rankings based on the nodes' degree and k-shell index while maintaining a low computational complexity. Our work represents a crucial step towards understanding and controlling the spread of diseases, rumors, information, trends, and innovations in networks.


Subject(s)
Models, Theoretical
10.
Sci Rep ; 7(1): 7465, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785001

ABSTRACT

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.

11.
Sci Rep ; 7: 40012, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059129

ABSTRACT

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field.

12.
Sci Rep ; 5: 18589, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26687638

ABSTRACT

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

13.
Article in English | MEDLINE | ID: mdl-26651790

ABSTRACT

We investigate the Taylor-Couette system where the radius ratio is close to unity. Systematically increasing the Reynolds number, we observe a number of previously known transitions, such as one from the classical Taylor vortex flow (TVF) to wavy vortex flow (WVF) and the transition to fully developed turbulence. Prior to the onset of turbulence, we observe intermittent bursting patterns of localized turbulent patches, confirming the experimentally observed pattern of very short wavelength bursts (VSWBs). A striking finding is that, for a Reynolds number larger than that for the onset of VSWBs, a new type of intermittently bursting behavior emerges: patterns of azimuthally closed rings of various orders. We call them ring-bursting patterns, which surround the cylinder completely but remain localized and separated in the axial direction through nonturbulent wavy structures. We employ a number of quantitative measures including the cross-flow energy to characterize the ring-bursting patterns and to distinguish them from the background flow. These patterns are interesting because they do not occur in the wide-gap Taylor-Couette flow systems. The narrow-gap regime is less studied but certainly deserves further attention to gain deeper insights into complex flow dynamics in fluids.

14.
Article in English | MEDLINE | ID: mdl-26382459

ABSTRACT

A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1-p, respectively. The fraction of infected nodes ρ(p) shows a nonmonotonic behavior, with ρ drops with p for small p and increases for large p. For small to moderate w1/w0 ratios, ρ(p) exhibits a minimum that signifies an optimal suppression. For large w1/w0 ratios, the suppression leads to an absorbing phase consisting only of healthy nodes within a range pL≤p≤pR, and an active phase with mixed infected and healthy nodes for ppR. A mean field theory that ignores spatial correlation is shown to give qualitative agreement and capture all the key features. A physical picture that emphasizes the intricate interplay between infections via w0 links and within clusters formed by nodes carrying the w1 links is presented. The absorbing state at large w1/w0 ratios results when the clusters are big enough to disrupt the spread via w0 links and yet small enough to avoid an epidemic within the clusters. A theory that uses the possible local environments of a node as variables is formulated. The theory gives results in good agreement with simulation results, thereby showing the necessity of including longer spatial correlations.


Subject(s)
Epidemics , Models, Biological , Computer Simulation , Environment , Probability
15.
Sci Rep ; 5: 13172, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26277903

ABSTRACT

Recent study shows that the accuracy of the k-shell method in determining node coreness in a spreading process is largely impacted due to the existence of core-like group, which has a large k-shell index but a low spreading efficiency. Based on the analysis of the structure of core-like groups in real-world networks, we discover that nodes in the core-like group are mutually densely connected with very few out-leaving links from the group. By defining a measure of diffusion importance for each edge based on the number of out-leaving links of its both ends, we are able to identify redundant links in the spreading process, which have a relatively low diffusion importance but lead to form the locally densely connected core-like group. After filtering out the redundant links and applying the k-shell method to the residual network, we obtain a renewed coreness ks for each node which is a more accurate index to indicate its location importance and spreading influence in the original network. Moreover, we find that the performance of the ranking algorithms based on the renewed coreness are also greatly enhanced. Our findings help to more accurately decompose the network core structure and identify influential nodes in spreading processes.


Subject(s)
Algorithms , Models, Theoretical
16.
Sci Rep ; 5: 10781, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26065572

ABSTRACT

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.

17.
Chaos ; 25(6): 063104, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26117098

ABSTRACT

Epidemic threshold has always been a very hot topic for studying epidemic dynamics on complex networks. The previous studies have provided different theoretical predictions of the epidemic threshold for the susceptible-infected-recovered (SIR) model, but the numerical verification of these theoretical predictions is still lacking. Considering that the large fluctuation of the outbreak size occurs near the epidemic threshold, we propose a novel numerical identification method of SIR epidemic threshold by analyzing the peak of the epidemic variability. Extensive experiments on synthetic and real-world networks demonstrate that the variability measure can successfully give the numerical threshold for the SIR model. The heterogeneous mean-field prediction agrees very well with the numerical threshold, except the case that the networks are disassortative, in which the quenched mean-field prediction is relatively close to the numerical threshold. Moreover, the numerical method presented is also suitable for the susceptible-infected-susceptible model. This work helps to verify the theoretical analysis of epidemic threshold and would promote further studies on the phase transition of epidemic dynamics.


Subject(s)
Computer Simulation , Infections/epidemiology , Models, Biological , Animals , Humans
18.
Article in English | MEDLINE | ID: mdl-25768568

ABSTRACT

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

19.
Biotechnol Bioeng ; 112(2): 297-307, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25163842

ABSTRACT

In the present study, a novel technique, which involves numerical computation of the mixing length of algae particles in raceway ponds, was used to evaluate the mixing process. A value of mixing length that is higher than the maximum streamwise distance (MSD) of algae cells indicates that the cells experienced an adequate turbulent mixing in the pond. A coupling methodology was adapted to map the pulsating effects of a 2D paddle wheel on a 3D raceway pond in this study. The turbulent mixing was examined based on the computations of mixing length, residence time, and algae cell distribution in the pond. The results revealed that the use of particle tracing methodology is an improved approach to define the mixing phenomenon more effectively. Moreover, the algae cell distribution aided in identifying the degree of mixing in terms of mixing length and residence time.


Subject(s)
Cell Culture Techniques/methods , Computer Simulation , Microalgae , Microalgae/cytology , Microalgae/physiology
20.
Sci Rep ; 4: 7486, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25501627

ABSTRACT

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.


Subject(s)
Biodiversity , Biological Evolution , Competitive Behavior , Cooperative Behavior , Ecosystem , Game Theory , Models, Theoretical , Computer Simulation , Population Dynamics , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...