Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 16915, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729449

ABSTRACT

Terahertz near-field microscopy (THz-NFM) could locally probe low-energy molecular vibration dynamics below diffraction limits, showing promise to decipher intermolecular interactions of biomolecules and quantum matters with unique THz vibrational fingerprints. However, its realization has been impeded by low spatial and spectral resolutions and lack of theoretical models to quantitatively analyze near-field imaging. Here, we show that THz scattering-type scanning near-field optical microscopy (THz s-SNOM) with a theoretical model can quantitatively measure and image such low-energy molecular interactions, permitting computed spectroscopic near-field mapping of THz molecular resonance spectra. Using crystalline-lactose stereo-isomer (anomer) mixtures (i.e., α-lactose (≥95%, w/w) and ß-lactose (≤4%, w/w)), THz s-SNOM resolved local intermolecular vibrations of both anomers with enhanced spatial and spectral resolutions, yielding strong resonances to decipher conformational fingerprint of the trace ß-anomer impurity. Its estimated sensitivity was ~0.147 attomoles in ~8 × 10-4 µm3 interaction volume. Our THz s-SNOM platform offers a new path for ultrasensitive molecular fingerprinting of complex mixtures of biomolecules or organic crystals with markedly enhanced spatio-spectral resolutions. This could open up significant possibilities of THz technology in many fields, including biology, chemistry and condensed matter physics as well as semiconductor industries where accurate quantitative mappings of trace isomer impurities are critical but still challenging.

2.
Nano Lett ; 15(1): 549-52, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25436437

ABSTRACT

Combined with terahertz (THz) time-domain spectroscopy, THz near-field microscopy based on an atomic force microscope is a technique that, while challenging to implement, is invaluable for probing low-energy light-matter interactions of solid-state and biomolecular nanostructures, which are usually embedded in background media. Here, we experimentally demonstrate a broadband THz pulse near-field microscope that provides subsurface nanoimaging of a metallic grating embedded in a dielectric film. The THz near-field microscope can obtain broadband nanoimaging of the subsurface grating with a nearly frequency-independent lateral resolution of 90 nm, corresponding to ∼ λ/3300, at 1 THz, while the AFM only provides a flat surface topography.

3.
Opt Express ; 19(12): 11539-44, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21716385

ABSTRACT

We demonstrated quantitative analysis and measurements of near-fields interactions in a terahertz pulse near-field microscope. We developed a self-consistent line dipole image method for the quantitative analysis of the near-field interaction in THz scattering-type scanning optical microscopes. The measurements of approach curves and relative contrasts on gold and silicon substrates were in excellent agreement with calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...