Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 15095, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956125

ABSTRACT

Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/ßcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.


Subject(s)
Elastin , Nanogels , Prostatic Neoplasms, Castration-Resistant , Male , Elastin/chemistry , Humans , Cell Line, Tumor , Nanogels/chemistry , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Drug Delivery Systems , Cell Survival/drug effects , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Benzopyrans , Butyrates
2.
Oxid Med Cell Longev ; 2022: 4512503, 2022.
Article in English | MEDLINE | ID: mdl-35814272

ABSTRACT

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a potent tumor suppressor that regulates several key cellular processes, including proliferation, survival, genomic integrity, migration, and invasion, via PI3K-dependent and independent mechanisms. A subtle decrease in PTEN levels or catalytic activity is implicated not only in cancer but also in a wide spectrum of other diseases, including various respiratory diseases. A systemic overview of the advances in the molecular and cellular mechanisms of PTEN involved in the initiation and progression of respiratory diseases may offer novel targets for the development of effective therapeutics for the treatment of respiratory diseases. In the present review, we highlight the novel findings emerging from current research on the role of PTEN expression and regulation in airway pathological conditions such as asthma/allergic airway inflammation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and other acute lung injuries (ALI). Moreover, we discuss the clinical implications of PTEN alteration and recently suggested therapeutic possibilities for restoration of PTEN expression and function in respiratory diseases.


Subject(s)
Acute Lung Injury , Asthma , Idiopathic Pulmonary Fibrosis , PTEN Phosphohydrolase , Pulmonary Disease, Chronic Obstructive , Humans , Inflammation , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism
3.
Toxicology ; 466: 153062, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34890707

ABSTRACT

Nicotine, a major alkaloid found in tobacco, is a significant risk factor for gastric cancer. IL-8, a pleiotropic cytokine, plays a vital role in cancer cell metastasis. The role of nicotine in IL-8 expression and the underlying mechanism is currently unknown. Here, we examined the effects of nicotine on IL-8 expression and explored the potential mechanisms in gastric cancer cells. We found that nicotine increases IL-8 expression. Specific inhibitor and mutagenesis studies showed that ROS and MAPK (Erk1/2, p38) were involved in this process. Deletion and site-directed mutagenesis studies indicate the involvement of transcription factor NF-κB and AP-1. ROS and ROS/MAPK (Erk1/2, p38) functioned as the upstream signaling molecules in the activation of NF-κB and AP-1, respectively. AGS gastric cancer cells pretreated with nicotine stimulate angiogenesis in the tumor microenvironment, partially abrogated by silencing IL-8 in AGS cells. In this study, we found that nicotine induces IL-8 expression via ROS/NF-κB and ROS/MAPK (Erk1/2, p38)/AP-1 axis in gastric cancer cells, thus stimulating endothelial cell proliferation and angiogenesis in the tumor microenvironment.


Subject(s)
Endothelial Cells/drug effects , Interleukin-8/metabolism , Nicotine/pharmacology , Signal Transduction/drug effects , Stomach Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Neovascularization, Pathologic , Reactive Oxygen Species/metabolism , Transcription Factor AP-1/metabolism , Tumor Microenvironment/drug effects
4.
Cancer Gene Ther ; 28(9): 911-923, 2021 09.
Article in English | MEDLINE | ID: mdl-33558704

ABSTRACT

The combination of cancer immunotherapy with efficient functionalized nanosystems has emerged as a beneficial treatment strategy and its use has increased rapidly. The roles of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, a subsidiary discipline in the field of immunology, are pivotal. The present era is witnessing rapid advancements in the use of nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. The development of cancer nanomedicine has posthaste ratified the outcomes of immunotherapy to the subsequent stage in the current era of medical research. This review focuses on key findings with respect to the effectiveness of nanomedicine-based cancer immunotherapies and their applications, which include i) immune checkpoint inhibitors and nanomedicine, ii) CRISPR-Cas nanoparticles (NPs) in cancer immunotherapy, iii) combination cancer immunotherapy with core-shell nanoparticles, iv) biomimetic NPs for cancer immunotherapy, and v) CAR-T cells and cancer nanoimmunotherapy. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.


Subject(s)
Immunotherapy/methods , Nanomedicine/methods , Nanoparticles/metabolism , Neoplasms/therapy , Humans
5.
Sci Rep ; 9(1): 2003, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765814

ABSTRACT

Metformin, an inexpensive, well-tolerated oral agent that is a commonly used first-line treatment for type 2 diabetes, has become the focus of intense research as a potential anticancer agent. In this study, we describe the inhibitory effect of metformin in interleukin 8 (IL-8) upregulation by lithocholic acid (LCA) in HCT116 colorectal cancer (CRC) cells. Pharmacological inhibition studies indicated that reactive oxygen species (ROS) were involved in LCA-induced IL-8 upregulation through activation of the transcription factor NF-κB. Metformin was demonstrated to block LCA-stimulated ROS production, in turn suppressing NF-κB signaling that was critical for IL-8 upregulation. An NADPH oxidase assay proved that the inhibitory effect of metformin on ROS production was derived from its strong suppression of NADPH oxidase, a key producer of ROS in cells. Compared with conditioned media (CM) derived from HCT116 cells treated with LCA, CM derived from HCT116 cells pretreated with metformin and then treated with LCA lost all stimulatory effect on endothelial cell proliferation and tubelike formation. In conclusion, metformin inhibited NADPH oxidase, which in turn suppressed ROS production and NF-κB activation to prevent IL-8 upregulation stimulated by LCA; this prevention thus obstructed endothelial cell proliferation and tubelike formation.


Subject(s)
Colorectal Neoplasms/pathology , Interleukin-8/metabolism , Lithocholic Acid/pharmacology , Metformin/pharmacology , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects , HCT116 Cells , Humans
6.
PLoS One ; 10(4): e0124007, 2015.
Article in English | MEDLINE | ID: mdl-25875631

ABSTRACT

Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9) is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA)-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Epithelial Cells/drug effects , Flavonoids/pharmacology , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 9/genetics , Transcription Factor AP-1/genetics , Antibodies/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gastric Mucosa/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/genetics , Mitogen-Activated Protein Kinase 9/metabolism , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/metabolism , Phosphorylation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction , Stomach/drug effects , Stomach/pathology , Tetradecanoylphorbol Acetate/antagonists & inhibitors , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factor AP-1/antagonists & inhibitors , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...