Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230112, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705178

ABSTRACT

Insects are the most diverse animal taxon on Earth and play a key role in ecosystem functioning. However, they are often neglected by ecological surveys owing to the difficulties involved in monitoring this small and hyper-diverse taxon. With technological advances in biomonitoring and analytical methods, these shortcomings may finally be addressed. Here, we performed passive acoustic monitoring at 141 sites (eight habitats) to investigate insect acoustic activity in the Viruá National Park, Brazil. We first describe the frequency range occupied by three soniferous insect groups (cicadas, crickets and katydids) to calculate the acoustic evenness index (AEI). Then, we assess how AEI varies spatially and temporally among habitat types, and finally we investigate the relationship between vegetation structure variables and AEI for each insect category. Overall, crickets occupied lower and narrower frequency bands than cicadas and katydids. AEI values varied among insect categories and across space and time. The highest acoustic activity occurred before sunrise and the lowest acoustic activity was recorded in pastures. Canopy cover was positively associated with cricket acoustic activity but not with katydids. Our findings contribute to a better understanding of the role of time, habitat and vegetation structure in shaping insect activity within diverse Amazonian ecosystems. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Acoustics , Ecosystem , Vocalization, Animal , Animals , Brazil , Gryllidae/physiology , Hemiptera/physiology , Orthoptera/physiology , Insecta/physiology
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230101, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705179

ABSTRACT

Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Biodiversity , Insecta , Insecta/physiology , Animals , Remote Sensing Technology/methods , Remote Sensing Technology/instrumentation , Biological Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...