Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118593, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37442041

ABSTRACT

Recycling and disposing wastewater from the pharmaceutical industry are of utmost importance in mitigating chemical waste generation, where unmanaged hazardous waste fluxes could cause massive environmental damage. Air stripping, steam stripping, distillation, and incineration offer significant emission reduction potentials for pharmaceutical applications; however, selecting specific process units is a complicated task due to the high number of influencing screening criteria. The mentioned chemical processes are modelled with the Aspen Plus program. This study examines the environmental impacts of adsorbable organic halogens (AOX) containing pharmaceutical process wastewater disposal by conducting life cycle impact assessments using the Product Environmental Footprint (PEF), IMPACT World + Endpoint V1.01, and Recipe 2016 Endpoint (H) V1.06 methods. The results show that the distillation-based separation of AOX compounds is characterized by the most favourable climate change impact and outranks the PEF single score of air stripping, steam stripping, and incineration by 6.3%, 29.1%, 52.0%, respectively. The energy-intensive distillation technology is further evaluated by considering a wide selection of energy sources (i.e., fossil fuel, nuclear, solar, wind onshore, and wind offshore) using PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analysis combined with multi-criteria decision support to determine the most beneficial AOX disposal scenario. The best overall AOX regeneration performance and lowest climate change impact (7.25 × 10-3 kg CO2-eq (1 kg purified wastewater)-1) are obtained by supplying variable renewable electricity from onshore wind turbines, reaching 64.87% carbon emission reduction compared to the baseline fossil fuel-based process alternative.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Steam , Organic Chemicals , Halogens , Decision Support Techniques , Pharmaceutical Preparations
2.
Membranes (Basel) ; 13(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36676894

ABSTRACT

Nitrogen is one of the most critical nutrients in the biosphere, and it is an essential nutrient for plant growth. Nitrogen exists in the atmosphere vastly as a gaseous form, but only reactive nitrogen is usable for plants. It is a valuable resource and worth recovering in the wastewater sector. The aim of this work was to prepare a comprehensive environmental analysis of a novel membrane contactor-based process, which is capable of highly efficient nitrogen removal from wastewater. Life cycle assessment (LCA), PESTLE and multi-criteria decision analysis (MCDA) were applied to evaluate the process. The EF 3.0 method, preferred by the European Commission, IMPACT World+, ReCiPe 2016 and IPCC 2021 GWP100 methods were used with six different energy resources-electricity high voltage, solar, nuclear, heat and power and wind energy. The functional unit of 1 m3 of water product was considered as output and "gate-to-gate" analysis was examined. The results of our study show that renewable energy resources cause a significantly lower environmental load than traditional energy resources. TOPSIS score was used to evaluate the alternatives in the case of MCDA. For the EU region, the most advantageous option was found to be wind energy onshore with a score of 0.76, and the following, nuclear, was 0.70.

3.
Membranes (Basel) ; 10(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207643

ABSTRACT

It can be stated that in the fine chemical industries, especially in the pharmaceutical industry, large amounts of liquid waste and industrial waste solvents are generated during the production technology. Addressing these is a key issue because their disposal often accounts for the largest proportion of the cost of the entire technology. There is need to develop regeneration processes that are financially beneficial to the plant and, if possible, reuse the liquid waste in the spirit of a circular economy, in a particular technology, or possibly elsewhere. The distillation technique proves to be a good solution in many cases, but in the case of mixtures with high water content and few volatile components, this process is often not cost-effective due to its high steam consumption, and in the case of azeotropic mixtures there are separation constraints. In the present work, the membrane process considered as an alternative; pervaporation is demonstrated through the treatment of low alcohol (methanol and ethanol) aqueous mixtures. Alcohol-containing process wastewaters were investigated in professional process simulator environment with user-added pervaporation modules. Eight different methods were built up in ChemCAD flowsheet simulator: organophilic pervaporation (OPV), hydrophilic pervaporation (HPV), hydrophilic pervaporation with recirculation (R-HPV), dynamic organophilic pervaporation (Dyn-OPV), dynamic hydronophilic pervaporation (Dyn-HPV), hybrid distillation-organophilic pervaporation (D + OPV), hybrid distillation-hydrophilic pervaporation (D + HPV), and finally hybrid distillation-hydrophilic pervaporation with recirculation (R-D + HPV). It can be stated the last solution in line was the most suitable in the terms of composition, however distillation of mixture with high water content has significant heat consumption. Furthermore, the pervaporation supplemented with dynamic tanks is not favourable due to the high recirculation rate in the case of tested mixtures and compositions.

SELECTION OF CITATIONS
SEARCH DETAIL
...