Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26066258

ABSTRACT

This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Re(p)=Gd(2)ν(-1) (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St=αRe(p) (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St=Re(p)) at low Re(p), particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Re(p), fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕ(c) to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α, particle aspect ratio r(p), and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high r(p) and low α.


Subject(s)
Hydrodynamics , Mechanical Phenomena , Models, Theoretical , Rotation , Rheology
2.
Article in English | MEDLINE | ID: mdl-24580319

ABSTRACT

The dynamical behavior of almost neutrally buoyant finite-size rigid fibers or rods in turbulent channel flow is studied by direct numerical simulations. The time evolution of the fiber orientation and translational and rotational motions in a statistically steady channel flow is obtained for three different fiber lengths. The turbulent flow is modeled by an entropy lattice Boltzmann method, and the interaction between fibers and carrier fluid is modeled through an external boundary force method. Direct contact and lubrication force models for fiber-fiber interactions and fiber-wall interaction are taken into account to allow for a full four-way interaction. The density ratio is chosen to mimic cellulose fibers in water. It is shown that the finite size leads to fiber-turbulence interactions that are significantly different from earlier reported results for pointlike particles (e.g., elongated ellipsoids smaller than the Kolmogorov scale). An effect that becomes increasingly accentuated with fiber length is an accumulation in high-speed regions near the wall, resulting in a mean fiber velocity that is higher than the mean fluid velocity. The simulation results indicate that the finite-size fibers tend to stay in the high-speed streaks due to collisions with the wall. In the central region of the channel, long fibers tend to align in the spanwise direction. Closer to the wall the long fibers instead tend to toward to a rotation in the shear plane, while very close to the wall they become predominantly aligned in the streamwise direction.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026320, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463330

ABSTRACT

We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...