Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: mdl-33833098

ABSTRACT

Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.


Subject(s)
Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Chlorella/enzymology , Fatty Acids/metabolism , Algal Proteins/chemistry , Algal Proteins/metabolism , Alkanes/metabolism , Amino Acid Substitution , Amino Acids/metabolism , Bicarbonates/metabolism , Biocatalysis , Carbon Dioxide/metabolism , Catalytic Domain , Crystallography, X-Ray , Decarboxylation , Electron Transport , Flavin-Adenine Dinucleotide/chemistry , Hydrogen Bonding , Light , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oxidation-Reduction , Photons , Protein Conformation , Temperature
2.
Nat Commun ; 11(1): 620, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001697

ABSTRACT

Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5'-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds.


Subject(s)
Coenzymes/chemistry , Crystallization , IMP Dehydrogenase/chemistry , Trypanosoma brucei brucei/enzymology , Amino Acid Sequence , Animals , Binding Sites , Catalytic Domain , Cloning, Molecular , Guanosine Monophosphate , Models, Molecular , Protein Conformation , Sf9 Cells , Trypanosoma brucei brucei/genetics
3.
J Synchrotron Radiat ; 26(Pt 2): 339-345, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30855241

ABSTRACT

The SPB/SFX instrument of the European XFEL provides unique possibilities for high-throughput serial femtosecond crystallography. This publication presents the liquid-jet sample delivery setup of this instrument. The setup is compatible with state-of-the-art gas dynamic virtual nozzle systems as well as high-viscosity extruders and provides space and flexibility for other liquid injection devices and future upgrades. The liquid jets are confined in a differentially pumped catcher assembly and can be replaced within a couple of minutes through a load-lock. A two-microscope imaging system allows visual control of the jets from two perspectives.

4.
J Synchrotron Radiat ; 22(3): 626-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25931078

ABSTRACT

Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using a dedicated beam, with no significant differences in quality.

5.
Struct Dyn ; 2(4): 041703, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26798803

ABSTRACT

Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.

6.
Nat Commun ; 3: 1276, 2012.
Article in English | MEDLINE | ID: mdl-23232406

ABSTRACT

Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

7.
Rev Sci Instrum ; 83(3): 035108, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22462961

ABSTRACT

We describe a liquid jet injector system developed to deliver fully solvated microscopic target species into a probe beam under either vacuum or ambient conditions. The injector was designed specifically for x-ray scattering studies of biological nanospecies using x-ray free electron lasers and third generation synchrotrons, but is of interest to any application in which microscopic samples must be delivered in a fully solvated state and with microscopic precision. By utilizing a gas dynamic virtual nozzle (GDVN) to generate a sample-containing liquid jet of diameter ranging from 300 nm to 20 µm, the injector avoids the clogging problems associated in this size range with conventional Rayleigh jets. A differential pumping system incorporated into the injector shields the experimental chamber from the gas load of the GDVN, making the injector compatible with high vacuum systems. The injector houses a fiber-optically coupled pump laser to illuminate the jet for pump-probe experiments and a hermetically sealed microscope to observe the liquid jet for diagnostics and alignment during operation. This injector system has now been used during several experimental runs at the Linac Coherent Light Source. Recent refinements in GDVN design are also presented.


Subject(s)
Biological Products/chemistry , Injections/instrumentation , Solvents/chemistry , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods , Equipment Design , Lasers , Motion , Vacuum
8.
Ultramicroscopy ; 111(7): 824-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21146302

ABSTRACT

A sufficiently thin column of liquid was produced to permit penetration with a 200 keV electron beam as evidenced by the observation of diffraction rings due to the intermolecular spacing of the liquid samples. For liquid thickness below 800 nm, the diffraction rings became visible above the inelastic background. Studies were carried out in the environmental chamber of a transmission electron microscope using water and isopropanol.


Subject(s)
Electrons , Microscopy, Electron, Transmission/methods , 2-Propanol/chemistry , Crystallography , Microscopy, Electron, Transmission/instrumentation , Water/chemistry
9.
Biophys J ; 100(1): 198-206, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21190672

ABSTRACT

Membrane proteins constitute > 30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is < 300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 µm. The results demonstrate that there are membrane protein crystals that contain < 100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain < 200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells.


Subject(s)
Cyanobacteria/chemistry , Nanoparticles/chemistry , Photosystem I Protein Complex/chemistry , X-Ray Diffraction , Powders
10.
Micron ; 40(4): 507-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19246201

ABSTRACT

We present a technique for the study of liquid jets in an environmental scanning electron microscope (ESEM). By using a two-fluid stream consisting of a water inner core and a co-flowing outer gas sheath, we are able to produce liquid streams of sufficiently low flow rate to be compatible with ESEM vacuum requirements. We have recorded ESEM images of water jets down to 700 nm diameter. Details of the jet structure, such as the point of jet breakup and size and shape of the jet cone, can be measured with ESEM to far greater accuracy than with optical microscopy. ESEM imaging of liquid jets offers a valuable research tool for the study of aerosol production, combustion processes, ink-jet generation, and many other attributes of micro- and nanojet systems.

11.
Phys Rev Lett ; 101(11): 115507, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18851299

ABSTRACT

A method is proposed for obtaining three simultaneous projections of a target from a single radiation pulse, which also allows the relative orientation of successive targets to be determined. The method has application to femtosecond x-ray diffraction, and does not require solution of the phase problem. We show that the principal axes of a compact charge-density distribution can be obtained from projections of its autocorrelation function, which is directly accessible in diffraction experiments. The results may have more general application to time resolved tomographic pump-probe experiments and time-series imaging.

12.
J Synchrotron Radiat ; 15(Pt 6): 593-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18955765

ABSTRACT

Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.


Subject(s)
Crystallization/methods , Flow Injection Analysis/methods , Microfluidics/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Proteins/chemistry , Proteins/ultrastructure , Specimen Handling/methods , X-Ray Diffraction/methods , Powders
13.
J Synchrotron Radiat ; 15(Pt 1): 62-73, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18097080

ABSTRACT

The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed serial crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. The incident X-ray fluence (energy/area) is evaluated that is required to obtain a given resolution from (i) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (ii) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (iii) the spatial frequency cut-off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. An inverse fourth-power dependence of exposure time on resolution is confirmed, with important implications for all coherent X-ray imaging. It is found that multiple single-file protein beams will be needed for sub-nanometer resolution on current third-generation synchrotrons, but not on fourth-generation designs, where reconstruction of secondary protein structure at a resolution of 7 A should be possible with relatively short exposures.


Subject(s)
Chaperonin 10/chemistry , Chaperonin 60/chemistry , Crystallography, X-Ray/methods , Computer Simulation
14.
J Chem Phys ; 123(24): 244304, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16396534

ABSTRACT

We consider a monodispersed Rayleigh droplet beam of water droplets doped with proteins. An intense infrared laser is used to align these droplets. The arrangement has been proposed for electron- and x-ray-diffraction studies of proteins which are difficult to crystallize. This paper considers the effect of thermal fluctuations on the angular spread of alignment in thermal equilibrium, and relaxation phenomena, particularly the damping of oscillations excited as the molecules enter the field. The possibility of adiabatic alignment is also considered. We find that damping times in a high-pressure gas cell as used in x-ray-diffraction experiments are short compared with the time taken for molecules to traverse the beam and that a suitably shaped field might be used for electron-diffraction experiments in vacuum to provide adiabatic alignment, thus obviating the need for a damping gas cell.


Subject(s)
Proteins/chemistry , Chemistry, Physical/methods , Crystallization , Electrons , Gases , Lasers , Macromolecular Substances , Models, Statistical , Muramidase/chemistry , Oscillometry , Protein Conformation , Temperature , Time Factors , X-Ray Diffraction , X-Rays
15.
Phys Rev Lett ; 92(19): 198102, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15169448

ABSTRACT

For solving the atomic structure of organic molecules such as small proteins which are difficult to crystallize, the use of a jet of doped liquid helium droplets traversing a continuous high energy electron beam is proposed as a means of obtaining electron diffraction patterns (serial crystallography). Organic molecules (such as small proteins) within the droplet (and within a vitreous ice jacket) may be aligned by use of a polarized laser beam. Iterative methods for solving the phase problem are indicated. Comparisons with a related plan for pulsed x-ray diffraction from single proteins in a molecular beam are provided.


Subject(s)
Electrons , Membrane Proteins/chemistry , Powder Diffraction/methods , Helium/chemistry , Powder Diffraction/instrumentation , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...