Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877361

ABSTRACT

BACKGROUND: Treatment of skin wounds with diverse pathological characteristics presents significant challenges due to the limited specific and efficacy of current wound healing approaches. Microneedle (MN) patches incorporating bioactive and stimulus materials have emerged as a promising strategy to overcome these limitations and integrating bioactive materials with anti-bacterial and anti-inflammatory properties for advanced wound dressing. METHODS: We isolated diphlorethohydroxycarmalol (DPHC) from Ishige okamurae and assessed its anti-inflammatory and anti-bacterial effects on macrophages and its antibacterial activity against Cutibacterium acnes. Subsequently, we fabricated polylactic acid (PLA) MN patches containing DPHC at various concentrations (0-0.3%) (PDPHC MN patches) and evaluated their mechanical properties and biological effects using in vitro and in vivo models. RESUTLS: Our findings demonstrated that DPHC effectively inhibited nitric oxide production in macrophages and exhibited rapid bactericidal activity against C. acnes. The PDPHC MN patches displayed potent antibacterial effects without cytotoxicity. Moreover, in 2,4-Dinitrochlorobenzene-stimulated mouse model, the PDPHC MN patches significantly suppressed inflammatory response and cutaneous lichenification. CONCLUSION: The results suggest that the PDPHC MN patches holds promise as a multifunctional wound dressing for skin tissue engineering, offering antibacterial properties and anti-inflammatory properties to promote wound healing process.

2.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667767

ABSTRACT

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Subject(s)
Animal Feed , Aquaculture , Chitosan , Cichlids , Intestines , Animals , Chitosan/pharmacology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Intestines/drug effects , Aquaculture/methods , Dietary Supplements , Antioxidants/pharmacology , Antioxidants/metabolism , Gene Expression/drug effects
3.
J Fish Dis ; 47(7): e13941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523339

ABSTRACT

The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.


Subject(s)
Aquaculture , Fish Diseases , Probiotics , Quorum Sensing , Quorum Sensing/drug effects , Aquaculture/methods , Probiotics/pharmacology , Animals , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fishes , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial
4.
Fish Physiol Biochem ; 50(3): 1315-1329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411877

ABSTRACT

Herbs and their by-products are important traditional medicines and food supplements; they provide numerous beneficial effects for animals. Consequently, probiotics are living cell organisms, nontoxic, and friendly microbes. Probiotics have numerous beneficial activities such as inhibition of pathogens, enhancement of the immune system, growth, disease resistance, improving water quality, reducing toxic effects, synthesis of vitamins, prevention of cancer, reduction of irritable bowel syndrome, and more positive responses in animals. Herbal and probiotic combinations have more active responses and produce new substances to enhance beneficial responses in animals. Herbal and probiotic mixture report is still limited applications for animals. However, the mechanisms by which they interact with the immune system and gut microbiota in animals are largely unclear. This review provides some information on the effect of herbal and probiotic blend on animals. This review discusses current research advancements to fulfill research gaps and promote effective and healthy animal production.


Subject(s)
Probiotics , Probiotics/therapeutic use , Probiotics/pharmacology , Animals , Fishes , Gastrointestinal Microbiome/drug effects , Dietary Supplements
5.
Fish Physiol Biochem ; 50(3): 955-971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38300372

ABSTRACT

The effects of long-term dietary supplementation with sandalwood (Santalum album L.) essential oil (SEO) was investigated on hemato-biochemical biomarkers, immune status, antioxidant capacity, and resistance against Staphylococcus aureus in Nile tilapia (Oreochromis niloticus). Five groups (with four replicates) of O. niloticus (12.60 ± 0.20 g) were fed diets supplemented with SEO at doses of 0, 0.5, 1.0, 2.0, and 4.0 mL/kg diet for 60 days. Results indicated a substantial increase in blood protein levels and lower serum cholesterol, cortisol, glucose, urea, creatinine levels and, transaminase activities of fish fed a 2.0-mL SEO/kg diet. Serum lysozyme activity, nitric oxide, complement-3 levels, and phagocytic activity were significantly improved in O. niloticus after 60 days of feeding SEO-supplemented diets. Dietary SEO at level of 2.0-mL SEO/kg diet increased the activities of SOD, CAT, and GPx, and decreased MDA levels in liver homogenate. In addition, dietary 2.0-mL SEO/kg diet significantly upregulated antioxidant genes expression (CAT, SOD, GPx, GST, and GSR) with downregulation of apoptotic genes (HSP70, TLR2, caspase-3, and PCNA) in the liver. Furthermore, SEO-enriched diets significantly down-regulated pro-inflammatory (TNF-α, IL-1ß, and IL-8) and up-regulated anti-inflammatory cytokine genes (TFG-ß and IL-10) in the spleen. Moreover, SEO fortification increased the relative percentage of survival against S. aureus challenge and regulated immune-antioxidant genes in the spleen after the challenge. Overall, the results revealed that long-term using SEO might strengthen the physiological performance, hepatic oxidant/antioxidant balance, innate immune response, and resistance of O. niloticus against bacterial infections.


Subject(s)
Antioxidants , Cichlids , Dietary Supplements , Immunity, Innate , Oils, Volatile , Animals , Cichlids/immunology , Cichlids/genetics , Cichlids/metabolism , Immunity, Innate/drug effects , Antioxidants/metabolism , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Staphylococcus aureus/drug effects , Animal Feed/analysis , Diet/veterinary , Fish Diseases/immunology , Gene Expression Regulation/drug effects , Staphylococcal Infections/veterinary
6.
Cell Death Dis ; 15(1): 23, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195619

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-related death, mostly due to metastatic disease and the fact that many patients already show signs of metastasis at the time of first diagnosis. Current CRC therapies negatively impact patients' quality of life and have little to no effect on combating the tumor once the dissemination has started. Danio rerio (zebrafish) is a popular animal model utilized in cancer research. One of its main advantages is the ease of xenograft transplantation due to the fact that zebrafish larvae lack the adaptative immune system, guaranteeing the impossibility of rejection. In this review, we have presented the many works that choose zebrafish xenograft as a tool for the study of CRC, highlighting the methods used as well as the promising new therapeutic molecules that have been identified due to this animal model.


Subject(s)
Colorectal Neoplasms , Perciformes , Animals , Humans , Heterografts , Transplantation, Heterologous , Zebrafish , Quality of Life
7.
Biol Trace Elem Res ; 202(3): 1264-1278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37434037

ABSTRACT

Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Zinc/pharmacology , Antioxidants , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Goldfish , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Nanoparticles/chemistry , Mucus , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/chemistry
8.
Fish Shellfish Immunol ; 143: 109191, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890736

ABSTRACT

Oxygen nanobubble (NB-O2) technology has been introduced to the aquaculture industry in recent years. This treatment usually results in a tremendously high level of dissolved oxygen (DO) in the water. However, little is known about the possible negative effects of hyperoxia due to NB-O2 treatment (hyper-NB-O2) on farmed fish. Here, we investigated i) the effect of short-term hyper-NB-O2 exposure (single treatment) on the innate immunity in Nile tilapia, Oreochromis niloticus, and ii) the effect of long-term hyper-NB-O2 exposure (26-day treatments) on survival, growth performance, gill histology, and gut microbiome in Nile tilapia. A single treatment with NB-O2 for 10 min in 50 L of water resulted in 24.2 ± 0.04 mg/L DO (approximately 2-3 × 107 nanoscale oxygen bubbles/mL). This treatment did not result in differences in expression of several immune-related genes (e.g., TNF-α, LYZ and HPS70) in various tissues (e.g., gill, head kidney, and spleen) compared to the non-treated control. Over a 26-day period of exposure, no significant differences were observed in survival and growth performance of the fish, but minor histological changes were occasionally noted on the gills. Analysis of the gut microbiome revealed a significant increase in the genera Bosea, Exiguobacterium, Hyphomicrobium, and Singulisphaera in the group receiving NB-O2. Moreover, no signs of "gas bubble disease" were observed in the fish throughout the duration of the experiment. Overall, these results suggest that both short- and long-term hyper-NB-O2 exposure appears to be benign and has no obvious adverse effects on fish.


Subject(s)
Cichlids , Fish Diseases , Gastrointestinal Microbiome , Hyperoxia , Animals , Gills , Immunity, Innate , Oxygen , Water
9.
Aquac Nutr ; 2023: 3679002, 2023.
Article in English | MEDLINE | ID: mdl-37124879

ABSTRACT

The current study is designed to assay the efficacy of chlorogenic acid (ChA) in the diet on growth performance, digestive enzyme activity, serum immunological, biochemical, and antioxidant variables, and mucosal immune response as well as disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles. Rainbow trout juveniles received diets supplemented with different inclusion levels of ChA (0 (ctrl), 200 (CA1), 400 (CA2), 600 (CA3), and 800 (CA4) mg kg-1 diet) for 60 days. According to the findings, fish from CA3 and CA4 groups demonstrated the best results considering the final weight (FW) and weight gain (WG) (P < 0.05). Also, the group that received 600 mg kg-1 ChA-supplemented diet showed the lowest feed conversion ratio (FCR) and the highest specific growth rate (SGR) compared to other groups (P < 0.05). Moreover, the minimum survival rate (SR) was only detected in the CA4 treatment (P < 0.05). Regression analysis exhibited that rainbow trout growth indices were polynomially linked to dietary chlorogenic acid concentrations. In this regard, the optimal levels of chlorogenic acid according to growth parameters (FCR and SGR) were 0.71 and 0.62 gr kg-1 diet, respectively. The results exhibited superior performance of protease and amylase activities in CA2, CA3, and CA4 groups with the maximum amount in the group receiving 600 mg kg-1 ChA-enriched diet (P < 0.05). Serum lysozyme (LYZ), immunoglobulin (Ig), and components 3 and 4 (C3 and C4) values of CA2, CA3, and CA4 groups were significantly higher than others with the highest amount in the CA3 group (P <0.05). Additionally, serum nitroblue tetrazolium (NBT) value in the CA3 and CA4 groups and myeloperoxidase (MPO) in the CA3 group were notably more than others (P < 0.05). Moreover, the lowest aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) and the highest total protein (TP) and globulin (GLO) values were observed in CA3 treatment (P < 0.05). CA2 and CA3 groups demonstrated increased serum catalase (CAT) and decreased malondialdehyde (MDA) values compared to the control while the highest CAT and lowest MDA values were observed in CA3 treatment (P < 0.05). Considering mucus immunity, the significantly maximum LYZ and protease values were demonstrated in CA2 and CA3 groups, and the highest ALP, Ig, and esterase values were demonstrated in the CA3 group. In comparison with the control, the mortality rates of the groups that received the ChA diets were remarkably (P < 0.05) lower postchallenge with Y. ruckeri, and the highest survival and relative percentage of survival (RPS) (P < 0.05) belonged to the CA3 group. Results obtained from the current study suggested ChA as a functional dietary additive to raise growth parameters, immune indices, antioxidant capacity, and resistance to disease in rainbow trout.

10.
Doc Ophthalmol ; 146(3): 257-266, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37219642

ABSTRACT

PURPOSE: Diopsys® NOVA™ is a novel full-field electroretinography (ffERG) device that can make rapid measurements of retinal electrophysiologic function. Diagnosys® Espion 2™ is a clinical gold-standard ERG device. This study aimed to investigate whether light-adapted Diopsys® NOVA™ fixed-luminance flicker ffERG magnitude and implicit time (converted from phase) measurements correlate with light-adapted Diagnosys® Espion 2™ flicker ffERG amplitude and implicit time measurements, respectively. METHODS: Twelve patients (22 eyes) with various retinal and uveitic diseases underwent light-adapted Diagnosys® Espion 2™ and Diopsys® NOVA™ fixed-luminance flicker testing. Diopsys® magnitude and implicit time (converted from phase) measurements were compared to Diagnosys® amplitude and implicit time measurements, and a Pearson correlation was used to evaluate any existing correlation. Groups were also compared using generalized estimating equations. Bland-Altman plots were utilized to determine agreement between the comparison groups. RESULTS: Age of patients ranged from 14 to 87 years. 58% (n = 7/12) of patients were female. A significant, positive correlation (r = 0.880, P < 0.001) was observed between magnitude (Diopsys®) and amplitude (Diagnosys®) measurements. Amplitude increases by 6.69 µV for each 1 µV increase in Magnitude (p-value < 0.001). A statistically significant, strong positive correlation was observed between Diopsys® implicit time measurements (converted from phase) and Diagnosys® implicit time measurements (r = 0.814, p-value < 0.001). For each 1 ms increase in Diopsys® implicit time, Diagnosys® implicit time increases by 1.13 ms (p-value < 0.001). CONCLUSIONS: There is a statistically significant positive correlation between light-adapted Diopsys® NOVA™ fixed-luminance flicker amplitude and Diagnosys® flicker magnitude values. Additionally, there is a statistically significant positive correlation between Diopsys® NOVA™ fixed-luminance flicker implicit time (converted from phase) and Diagnosys® flicker implicit time values. These results imply that the Diopsys® NOVA™ module, which utilizes the nonstandard shortened International Society for Clinical Electrophysiology of Vision (ISCEV) ERG protocol, can produce reliable light-adapted flicker ffERG measurements.


Subject(s)
Electroretinography , Retina , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Male , Electroretinography/methods , Photic Stimulation
11.
Animals (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37238012

ABSTRACT

Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.

12.
Aquac Nutr ; 2023: 1168262, 2023.
Article in English | MEDLINE | ID: mdl-36860974

ABSTRACT

This study was done to evaluate the effect of different quercetin levels on growth performance, immune responses, antioxidant status, serum biochemical factors, and high-temperature stress responses in common carp (Cyprinus carpio). A total number of 216 common carp with an average weight of 27.21 ± 53 g were divided into 12 tanks (four treatments × three replications) and fed 0 mg/kg quercetin (T0), 200 mg/kg quercetin (T1), 400 mg/kg quercetin (T2), and 600 mg/kg quercetin (T3) for 60 days. There were significant differences in growth performance, and the highest final body weight (FBW), weight gain (WG), specific growth rate (SGR), and feed intake (FI) were observed in T2 and T3 (P < 0.05). Different quercetin levels significantly increased complement pathway activity (ACH50) and lysozyme activity both before and after heat stress (P < 0.05). Catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) were significantly increased in fish exposed to heat stress, but fish fed with a supplemented diet with quercetin showed the lowest levels both before and after heat stress (P < 0.05). Superoxide dismutase (SOD) levels were significantly enhanced in fish fed diets supplemented with quercetin in both phases (P < 0.05). Different quercetin levels led to a significant decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) before and after the challenging test (P < 0.05). Glucose and cortisol levels were significantly higher in the control group compared to the other treatments in both phases (P < 0.05). The expression of glutathione peroxidase (GPx) and lysozyme was markedly upregulated in fish fed with quercetin-supplemented diets (P < 0.05). No marked effects were observed for growth hormone (GR) and interleukin-8 (IL8) (P > 0.05). In conclusion, dietary quercetin supplementations (400-600 mg/kg quercetin) improved growth performance, immunity, and antioxidant status and increased tolerance to heat stress.

13.
Animals (Basel) ; 13(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36766300

ABSTRACT

The effects of dietary glycine supplementation, 0 (control), 5 (5 GL), and 10 (10 GL) g/kg, have been investigated on growth performance, hematological parameters, erythrocyte antioxidant capacity, humoral and mucosal immunity in common carp, Cyprinus carpio. After eight weeks feeding, the 5 GL treatment exhibited significant improvement in growth performance and feed efficacy, compared to the control treatment. Red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin, hematocrit, neutrophil and monocyte counts/percentages, RBC reduced glutathione (GSH) content, and skin mucosal alkaline phosphatase, peroxidase, protease, and lysozyme activities were similar in the glycine-treated fish and significantly higher than the control treatment. Blood lymphocyte percentage decreased in the glycine-treated fish, but lymphocyte count increased, compared to the control fish. RBC glutathione reductase activities in the glycine-treated fish were similar and significantly lower than the control treatment. The highest plasma lysozyme and alternative complement activities were observed in GL treatment. The glycine-treated fish, particularly 5 GL, exhibited significant improvement in RBC osmotic fragility resistance. Dietary glycine had no significant effects on RBC glutathione peroxidase activity, plasma immunoglobulin, eosinophil percentage/count, and hematological indices. In conclusion, most of the benefits of dietary glycine supplementation may be mediated by increased glutathione synthesis and antioxidant power.

14.
Fish Shellfish Immunol ; 133: 108568, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36717065

ABSTRACT

The current study was designed to examine the impacts of dietary mannan-oligosaccharides (MOS) on growth, hemato-biochemical changes, digestive-antioxidant enzyme activity, immune response, and disease resistance of milkfish (Chanos chanos) fed diets contained MOS i.e. 1g, 2g, and 3g MOS. The growth parameters were significantly influence in milkfish fed all MOS diets, whereas the feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly influence with 2g or 3g MOS diets. The total protein (TP), globulin (GB), and glucose (GLU) levels, amylase, protease, liver enzymes were found significantly high in fish fed 2g or 3g MOS diets; but, lipase, trypsin, and alkaline phosphatase (ALP) enzymes were increased significantly at 3g MOS diet. All MOS inclusion levels were significantly increased total and Lactobacillus intestinal microflora population. The oxidative enzymes activity as superoxide desmutase (SOD) and catalyze (CAT) were progressively increased with all MOS supplementation diet, but the glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) content were found significantly high in fish fed 2g or 3g MOS diets. Similarly, the reduced glutathione (GSH) and glutathione reductase (GR) contents were observed significantly high level in fish fed 3g MOS diet. The phagocytic (PC) and lysozyme (LYZ) activities were found gradually increase in fish fed increasing level of MOS diets, while the respiratory burst (RB) and malondialdehyde (MDA) activities were seen significant in fish fed 2g and 3g MOS diets. The current research work confirmed that C. chanos fed diets contained 3g kg-1 MOS recorded better growth performance, digestive-antioxidant, immune response, and disease resistance.


Subject(s)
Antioxidants , Mannans , Animals , Antioxidants/metabolism , Mannans/metabolism , Disease Resistance , Diet/veterinary , Fishes , Dietary Supplements , Oligosaccharides/metabolism , Animal Feed/analysis
15.
Life (Basel) ; 13(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36676125

ABSTRACT

The identification and development of a new plant-based feed ingredient as an alternative protein source to FM have gained the interest of the aquafeed industrial players. Therefore, this study aimed to investigate the physical, biochemical, and bacteriological properties of dietary FWM and the impacts on the growth and reproductive performances of farmed female stinging catfish, H. fossilis broodstock. Five experimental diets were formulated with different FWM inclusion (0, 25, 50, 75, and 100%). Fatty acid profiles such as 4:0, 10:0, 20:0, 21:0, 22:0, 24:0, 20:1n9, 18:3n6, 20:3n6, 20:4n6, and 22:6n3 were found in higher levels in FWM compared to the water spinach meal (WM). Meanwhile, there were no significant differences in the physical properties of the FWM experimental diets (p > 0.05). Furthermore, the experimental feed with 0%, 25%, 50%, and 75% FWM were more palatable to the broodstock than 100% FWM. The number of total bacteria (TB) and lactic acid bacteria (LAB) in catfish diets exhibited a rising trend with an increase in FWM, while 50% of FWM-fed fish intestines had a significantly (p < 0.05) higher TB and LAB than other treatment groups. The growth, feed utilization, and reproductive variables of H. fossilis were significantly (p < 0.05) influenced by FWM inclusion at various levels. Moreover, the significantly (p < 0.05) highest oocytes weight, fertilization, egg ripeness, and ovipositor diameter were observed in the treatment of 50% FWM diet treatment group. In addition, the spawning response was 100% in all treatments except for the control group (66.67%). Significant differences (p < 0.05) were found in the hematological and serum biochemical indices in most treatment groups. In addition, the histological analysis of H. fossilis midintestinal tissue indicated that the fish fed with a 50% FWM diet had an unbroken epithelial barrier with more goblet cell arrangements and a well-organized villi structure and tunica muscularis compared to other treatment groups. These outcomes suggested that FWM at 50% inclusion is an adequate protein supplement for fish feed, resulting in better growth, reproductive performance, and health of H. fossilis broodstock development.

16.
Animals (Basel) ; 13(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36670784

ABSTRACT

Carp is an important aquaculture species globally, and the production is expected to increase with the growing market demands. Despite that, disease outbreaks remain a major challenge, impeding the development of sustainable carp farming. Moreover, the application of antibiotics, a common prophylactic agent, can adversely impact public health and the environment. Therefore, polysaccharide has been recognized as a novel prophylactic agent in the health management of carp farming, as well as gaining consumers' confidence in carp farming products. In this review, the definition, sources, and main roles of polysaccharides in improving growth performance, stimulating the immune system, enhancing disease resistance, and alleviating abiotic stresses in carp farming are discussed and summarized. In addition, the use of polysaccharides in combination with other prophylactic agents to improve carp farming production is also highlighted. This review aims to highlight the roles of polysaccharides and provide valuable information on the benefits of polysaccharides in carp farming.

17.
Probiotics Antimicrob Proteins ; 15(2): 363-378, 2023 04.
Article in English | MEDLINE | ID: mdl-34596882

ABSTRACT

The purpose of this study was to evaluate the effect of Bacillus spp. mixture (Bacillus subtilis TISTR001, Bacillus megaterium TISTR067, and Bacillus licheniformis DF001) (1 × 106 CFU/g) on growth, immune parameters, immune-related gene expression, and resistance of Nile tilapia against Streptococcus agalactiae AAHM04. Fish were fed different concentrations of Bacillus spp. 0 (control; T1), 1 (T2), 3 (T3), and 5 (T4) g/kg diets for 120 days. The results showed that weight gain, average daily gain, specific growth rate, feed conversion ratio in T3 diet were significantly higher than the control group and other tested diets (p < 0.05). Immune parameters, such as myeloperoxidase and lysozyme, were significantly higher in the T3 and T4 diets compared to the control group (p < 0.05). Similarly, IL-1ß and TNF-α gene expressions in the spleen of fish fed T2, T3, and T4 diets were significantly higher than the control group (p < 0.05). However, no significant differences in survival rate, hematology, blood chemical indices, malondialdehyde (MDA) levels, body chemical composition, and organosomatic indices (p > 0.05) were noticed in all treatments. No significant differences in survival rate after the challenge test with S. agalactiae AAHM04 were found in fish fed Bacillus spp. mixture diets, except for the T3 diet. These results suggest that Bacillus spp. mixture diet at 3 g/kg diet (T3) could improve growth, immune response, and disease resistance of Nile tilapia.


Subject(s)
Bacillus , Cichlids , Probiotics , Streptococcal Infections , Animals , Bacillus/genetics , Streptococcus agalactiae , Probiotics/pharmacology , Disease Resistance , Diet , Streptococcal Infections/veterinary , Animal Feed/analysis , Dietary Supplements
18.
Vet Res Commun ; 47(2): 731-744, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36400970

ABSTRACT

Medicinal plants are powerful antioxidants which can improve well-being and suppress oxidative stress caused by environmental toxins in aquatic animals. In this regard, the present research was designed to show the potential effects of psyllium (Plantago ovata) seed extract (PSE) on the growth, and immune responses of common carp Cyprinus carpio exposed to acute ammonia toxicity. To perform the study, fish were fed with diets containing 0 (T0), 0.25 (T1), 0.5 (T2), and 1% (T3) PSE for 60 days, and then exposed to ammonia (0.5 mg L-1) for 3 h. The findings showed that fish given the T1 diet outperformed the T3 and control groups in terms of ultimate weight, weight increase, and food conversion ratio. Additionally, the T1 group showed a significantly higher level of total protein and serum lysozyme activity than the other treatment groups. Moreover, the highest serum total immunoglobulin values were recorded in T1 and T2 groups. The results showed that PSE, especially at moderate levels, could successfully upregulate the transcription of immune-related genes (IFN-γ, Hsp70, TNF-ɑ, IL-1ß, IL-10, and IgE) compared to the control group after exposure to ammonia. Furthermore, improving ammonia-induced down regulations of antioxidant-related gene expressions (CYP1A, SOD, and GPX) was observed in fish fed with PSE-included diets compared to the control one. However, PSE-supplemented diets did not affect the mRNA expression level of CAT. Regarding tight junction-associated genes, the higher mRNA expression level of occludin was observed in the T1 group, whereas the downregulation of CLD3 gene occurred in all experimental groups. Conversely, significant upregulation of osmoregulation-associated gene (NKA) was recorded in all experimental groups compared to the control one. Therefore, the administration of PSE (0.25% of the diet) for 60 days is recommended to increase growth performance, improve health, and increase the resistance of common carp to oxidative stress caused by ammonia.


Subject(s)
Carps , Plantago , Animals , Ammonia/toxicity , Plantago/metabolism , Dietary Supplements , Diet/veterinary , Antioxidants , Plant Extracts/pharmacology , Immunity , Animal Feed/analysis
19.
Probiotics Antimicrob Proteins ; 15(5): 1312-1326, 2023 10.
Article in English | MEDLINE | ID: mdl-36053440

ABSTRACT

The purpose of this study was to evaluate the effects of red yeast (Sporidiobolus pararoseus) produced from crude glycerol, as a by-product of the biodiesel production process, on the growth, innate immunity, expression of immune-related gene, and resistance of Nile tilapia against challenge with Streptococcus agalactiae. Fish were fed diets supplied with different concentrations of S. pararoseus dried cells at 0.0 (control; T1), 5.0 (T2), 10.0 (T3), and 20.0 (T4) g kg-1 diets for 90 days. The results showed that final body weight, weight gain, and average daily gain were significantly higher in fish fed T3 and T4 compared to the control group (p < 0.05). Likewise, significant (p < 0.05) increases in total carotenoid content, liver superoxide dismutase activity (SOD), and serum lysozyme and albumin were observed in Nile tilapia fed S. pararoseus, with the highest (p < 0.05) values displayed in fish fed the T4 diet. Moreover, up-regulation of IL-1ß transcription in Nile tilapia spleen and liver was observed in fish feeding group T4. In a challenge test against S. agalactiae, the fish survival rate was significantly higher in fish fed red yeast compared to the control group (p < 0.05). The highest bactericidal activity found in the T4 group (p < 0.05). However, no significant differences were found in hematology, blood chemical, malondialdehyde (MDA), body chemical composition, organosomatic indices, and myeloperoxidase (p > 0.05) in all treatments. The present results suggested that red yeast S. pararoseus (20.0 g kg-1) can be used as a potential supplementation on growth, immune response, and disease resistance of Nile tilapia.


Subject(s)
Biological Products , Cichlids , Streptococcal Infections , Animals , Disease Resistance , Cichlids/genetics , Immunity, Innate , Diet/veterinary , Biological Products/pharmacology , Animal Feed/analysis , Dietary Supplements
20.
Ocul Immunol Inflamm ; 31(9): 1819-1824, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36170559

ABSTRACT

PURPOSE: To evaluate the correlation between longitudinal changes in aqueous flare measured by laser flare photometer (LFP), best-corrected visual acuity (BCVA), and clinical grade using both Standardization of Uveitis Nomenclature (SUN) and modified SUN (MSUN) scales uveitis patients. METHODS: Patients were classified according to both SUN and MSUN grading scales. LFP measurements were acquired (Kowa FM-700) at each visit. Mean change in LFP was assessed longitudinally, comparing with those in visual acuity, SUN, and MSUN grading scales. RESULTS: Mean change in LFP was correlated to those in BCVA (p = .018), SUN scale (p < .001), and MSUN scale (p = .008). Cases within same initial SUN (0 and 1+) and MSUN (0.5+ and 1+) grades and different longitudinal flare prognosis (decreased/unchanged/increased) had significantly different initial LFP values (all p < .05). CONCLUSIONS: LFP measurement is beneficial in monitoring inflammatory activity. Cases of identical clinical flare scores with different clinical prognosis may be predicted by LFP.


Subject(s)
Uveitis, Anterior , Uveitis , Humans , Aqueous Humor , Uveitis/diagnosis , Photometry , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...