Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 4: 505, 2014.
Article in English | MEDLINE | ID: mdl-24409185

ABSTRACT

TweakR is a TNF receptor family member, whose natural ligand is the multifunctional cytokine TWEAK. The growth inhibitory activity observed following TweakR stimulation in certain cancer cell lines and the overexpression of TweakR in many solid tumor types led to the development of enavatuzumab (PDL192), a humanized IgG1 monoclonal antibody to TweakR. The purpose of this study was to determine the mechanism of action of enavatuzumab's tumor growth inhibition and to provide insight into the biology behind TweakR as a cancer therapeutic target. A panel of 105 cancer lines was treated with enavatuzumab in vitro; and 29 cell lines of varying solid tumor backgrounds had >25% growth inhibition in response to the antibody. Treatment of sensitive cell lines with enavatuzumab resulted in the in vitro and in vivo (xenograft) activation of both classical (p50, p65) and non-classical (p52, RelB) NFκB pathways. Using NFκB DNA binding functional ELISAs and microarray analysis, we observed increased activation of NFκB subunits and NFκB-regulated genes in sensitive cells over that observed in resistant cell lines. Inhibiting NFκB subunits (p50, p65, RelB, p52) and upstream kinases (IKK1, IKK2) with siRNA and chemical inhibitors consistently blocked enavatuzumab's activity. Furthermore, enavatuzumab treatment resulted in NFκB-dependent reduction in cell division as seen by the activation of the cell cycle inhibitor p21 both in vitro and in vivo. The finding that NFκB drives the growth inhibitory activity of enavatuzumab suggests that targeting TweakR with enavatuzumab may represent a novel cancer treatment strategy.

2.
MAbs ; 5(4): 523-32, 2013.
Article in English | MEDLINE | ID: mdl-23765106

ABSTRACT

We developed a method for deep mutational scanning of antibody complementarity-determining regions (CDRs) that can determine in parallel the effect of every possible single amino acid CDR substitution on antigen binding. The method uses libraries of full length IgGs containing more than 1000 CDR point mutations displayed on mammalian cells, sorted by flow cytometry into subpopulations based on antigen affinity and analyzed by massively parallel pyrosequencing. Higher, lower and neutral affinity mutations are identified by their enrichment or depletion in the FACS subpopulations. We applied this method to a humanized version of the anti-epidermal growth factor receptor antibody cetuximab, generated a near comprehensive data set for 1060 point mutations that recapitulates previously determined structural and mutational data for these CDRs and identified 67 point mutations that increase affinity. The large-scale, comprehensive sequence-function data sets generated by this method should have broad utility for engineering properties such as antibody affinity and specificity and may advance theoretical understanding of antibody-antigen recognition.


Subject(s)
Amino Acid Substitution , Antibodies, Monoclonal, Humanized , Antineoplastic Agents , Complementarity Determining Regions , ErbB Receptors/immunology , Mutation, Missense , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Cetuximab , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , ErbB Receptors/genetics , HEK293 Cells , Humans
3.
J Neurosci ; 28(27): 6787-93, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-18596154

ABSTRACT

In addition to parenchymal amyloid-beta (Abeta) plaques, Alzheimer's disease (AD) is characterized by Abeta in the cerebral vasculature [cerebral amyloid angiopathy (CAA)] in the majority of patients. Recent studies investigating vascular Abeta (VAbeta) in amyloid precursor protein transgenic mice have suggested that passive immunization with anti-Abeta antibodies may clear parenchymal amyloid but increase VAbeta and the incidence of microhemorrhage. However, the influences of antibody specificity and exposure levels on VAbeta and microhemorrhage rates have not been well established, nor has any clear causal relationship been identified. This report examines the effects of chronic, passive immunization on VAbeta and microhemorrhage in PDAPP mice by comparing antibodies with different Abeta epitopes (3D6, Abeta(1-5); 266, Abeta(16-23)) and performing a 3D6 dose-response study. VAbeta and microhemorrhage were assessed using concomitant Abeta immunohistochemistry and hemosiderin detection. 3D6 prevented or cleared VAbeta in a dose-dependent manner, whereas 266 was without effect. Essentially complete absence of VAbeta was observed at the highest 3D6 dose, whereas altered morphology suggestive of ongoing clearance was seen at lower doses. The incidence of microhemorrhage was increased in the high-dose 3D6 group and limited to focal, perivascular sites. These colocalized with Abeta deposits having altered morphology and apparent clearance in the lower-dose 3D6 group. Our results suggest that passive immunization can reduce VAbeta levels, and modulating antibody dose can significantly mitigate the incidence of microhemorrhage while still preventing or reducing VAbeta. These observations raise the possibility that Abeta immunotherapy can potentially slow or halt the course of CAA development in AD that is implicated in vascular dysfunction.


Subject(s)
Amyloid beta-Peptides/immunology , Cerebral Amyloid Angiopathy/drug therapy , Cerebral Amyloid Angiopathy/immunology , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/immunology , Immunization, Passive/methods , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Protein Precursor/genetics , Animals , Antibodies/immunology , Antibodies/pharmacology , Antibodies/therapeutic use , Cerebral Amyloid Angiopathy/genetics , Cerebral Arteries/drug effects , Cerebral Arteries/immunology , Cerebral Arteries/metabolism , Cerebral Hemorrhage/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/immunology , Epitopes/immunology , Female , Metabolic Clearance Rate/immunology , Mice , Mice, Transgenic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...