Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 53(23): 12449-58, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25402557

ABSTRACT

The synthesis and characterization of a series of group 4 carboxylate derivatives ([M(ORc)4] where M = Ti, Zr, Hf) was undertaken for potential utility as precursors to ceramic nanowires. The attempted syntheses of the [M(ORc)4] precursors were undertaken from the reaction of [M(OBu(t))4] with a select set of carboxylic acids (H-ORc where ORc = OPc (O2CCH(CH3)2), OBc (O2CC(CH3)3), ONc (O2CCH2C(CH3)3)). The products were identified by single-crystal X-ray diffraction studies as [Ti(η(2)-OBc)3(OBu(t))] (1), [Zr2(µ3-O)(µ-OPc)4(µ,η(2)-OPc)(η(2)-OPc)]2 (2), [H]2[Zr(η(2)-OBc)2(OBc)2(OBc)2] (3), [Zr(µ-ONc)2(η(2)-ONc)2]2 (4), or [Hf(µ-ORc)2(η(2)-ORc)2]2 [ORc = OPc (5), OBc (6, shown), ONc (7)]. The majority of compounds (4-7) were isolated as dinuclear species with a dodecahedral-like (CN-8) bonding mode around the metals due to chelation and bridging of the ORc ligand. The two monomers (1 and 3) were found to adopt a capped trigonal prismatic and CN-8 geometry, respectively, due to chelating ORc and terminal ORc or OBu(t) ligands. The metals of the oxo-species 2 were isolated in octahedral and CN-8 arrangements. These compounds were then processed by electrospinning methods (applied voltage 10 kV, flow rate 30-60 µL/min, electric field 0.5 kV/cm), and wire-like morphologies were isolated using compounds 4, 6 (shown), and 7.

2.
Dalton Trans ; 41(31): 9349-64, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22763732

ABSTRACT

A series of tin(II) amide alkoxides ([(OR)Sn(NMe(2))](n)) and tin(II) alkoxides ([Sn(OR)(2)](n)) were investigated as precursors for the production of tin oxide (SnO(x)) nanowires. The precursors were synthesized from the metathesis of tin dimethylamide ([Sn(NMe(2))(2)](2)) and a series of aryl alcohols {H-OAr = H-OC(6)H(4)(R)-2: R = CH(3) (H-oMP), CH(CH(3))(2) (H-oPP), C(CH(3))(3) (H-oBP)] or [H-OC(6)H(3)(R)(2)-2,6: R = CH(3) (H-DMP), CH(CH(3))(2) (H-DIP), C(CH(3))(3) (H-DBP)]}. The 1:1 products were all identified as the dinuclear species [(OAr)Sn(µ-NMe(2))](2) where OAr = oMP (1), oPP (2), oBP (3), DMP (4), DIP (5), DBP (6). The 1:2 products were identified as either a polymer ([Sn(µ-OAr)(2)](∞) (where OAr = oMP (7), oPP (8)), dinuclear [(OAr)Sn(µ-OAr)](2) (where OAr = oBP (9), DMP (10) or DIP/HNMe(2) (11)), or mononuclear [Sn(DBP)(2)] (12) complexes. These novel families of compounds (heteroleptic 1-6, and homoleptic 7-12) were evaluated for the production of SnO(x) nanowires using solution precipitation (SPPT; oleylamine/octadecene solvent system) or electrospinning (ES; THF solvent) processing conditions. The SPPT route that employed the heteroleptic precursors yielded mixed phases of Sn(o):romarchite [1 (100:0); 2 (80:20); 3 (68:32); 4 (86:14); 5 (66:35); 6 (88:12)], with a variety of spherical sized particles [1 (350-900 nm); 2 (150-1200 nm); 3 (250-950 nm); 4 (20-180 nm); 5 (80-400 nm); 6 (40-200 nm)]. For the homoleptic precursors, similar phased [7 (80:20); 8 (23:77); 9 (15:85); 10 (34:66); 11 (77:23); 12 (77:23)] spherical nanodots were isolated [7 (50-300 nm); 8: (irregular); 10 (200-800 nm); 11 (50-150 nm); 12 (50-450 nm)], except for 9 which formed polycrystalline rods [Sn(o):romarchite (15:85)] with aspect ratios >100. From ES routes, the heteroleptic species were found to form 'tadpole-shaped' materials whereas the homoleptic species formed electrosprayed nanodots. The one exception noted was for 7, where, without use of a polymer matrix, nanowires of Sn(o), decorated with micron sized 'balls' were observed. Due to the small amount of material generated, PXRD patterns were inconclusive to the identity of the generated material; however, cyclic voltammetry on select samples was used to tentatively identify the final Sn(o) (from 7) with the other sample identified as SnO(x) (from 1).

SELECTION OF CITATIONS
SEARCH DETAIL
...