Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(2): 022502, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505949

ABSTRACT

The excitation energy of the 1/2^{-} isomer in ^{99}In at N=50 is measured to be 671(37) keV and the mass uncertainty of the 9/2^{+} ground state is significantly reduced using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The measurements exploit a major improvement in the resolution of the multireflection time-of-flight mass spectrometer. The results reveal an intriguing constancy of the 1/2^{-} isomer excitation energies in neutron-deficient indium that persists down to the N=50 shell closure, even when all neutrons are removed from the valence shell. This trend is used to test large-scale shell model, ab initio, and density functional theory calculations. The models have difficulties describing both the isomer excitation energies and ground-state electromagnetic moments along the indium chain.

2.
Nature ; 607(7918): 260-265, 2022 07.
Article in English | MEDLINE | ID: mdl-35831598

ABSTRACT

In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3-5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements performed to investigate the validity of this simple single-particle picture. Observation of an abrupt change in the dipole moment at N = 82 indicates that, whereas the single-particle picture indeed dominates at neutron magic number N = 82 (refs. 2,8), it does not for previously studied isotopes. To investigate the microscopic origin of these observations, our work provides a combined effort with developments in two complementary nuclear many-body methods: ab initio valence-space in-medium similarity renormalization group and density functional theory (DFT). We find that the inclusion of time-symmetry-breaking mean fields is essential for a correct description of nuclear magnetic properties, which were previously poorly constrained. These experimental and theoretical findings are key to understanding how seemingly simple single-particle phenomena naturally emerge from complex interactions among protons and neutrons.

3.
Phys Rev Lett ; 124(15): 152501, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357059

ABSTRACT

The lifetimes of the first excited 2^{+} states in the N=Z nuclei ^{80}Zr, ^{78}Y, and ^{76}Sr have been measured using the γ-ray line shape method following population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. The extracted reduced electromagnetic transition strengths yield new information on where the collectivity is maximized and provide evidence for a significant, and as yet unexplained, odd-odd vs even-even staggering in the observed values. The experimental results are analyzed in the context of state-of-the-art nuclear density-functional model calculations.

4.
Phys Rev Lett ; 113(25): 252501, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25554877

ABSTRACT

We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

5.
Phys Rev Lett ; 109(3): 032501, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861839

ABSTRACT

Atomic masses of the neutron-rich isotopes (121-128)Cd, (129,131)In, (130-135)Sn, (131-136)Sb, and (132-140)Te have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei (135)Sn, (136)Sb, and (139,140)Te were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across N = 82 for Sn, with a Z dependence that is unexplainable by the current theoretical models.

6.
Phys Rev Lett ; 108(9): 092501, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463627

ABSTRACT

Stimulated by recent experimental discoveries, triaxial strongly deformed (TSD) states in (158)Er at ultrahigh spins have been studied by means of the Skyrme-Hartree-Fock model and the tilted-axis-cranking method. Restricting the rotational axis to one of the principal axes--as done in previous cranking calculations--two well-defined TSD minima in the total Routhian surface are found for a given configuration: one with positive and another with negative triaxial deformation γ. By allowing the rotational axis to change direction, the higher-energy minimum is shown to be a saddle point. This resolves the long-standing question of the physical interpretation of the two triaxial minima at a very similar quadrupole shape obtained in the principal-axis-cranking approach. Several TSD configurations have been predicted, including a highly deformed band, which is a candidate for the structure observed in experiment.

7.
Phys Rev Lett ; 106(13): 132502, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517376

ABSTRACT

The superallowed ß-decay rates that provide stringent constraints on physics beyond the standard model of particle physics are affected by nuclear structure effects through isospin-breaking corrections. The self-consistent isospin- and angular-momentum-projected nuclear density functional theory is used for the first time to compute those corrections for a number of Fermi transitions in nuclei from A=10 to A=74. The resulting leading element of the Cabibbo-Kobayashi-Maskawa matrix, |V(ud)|=0.97447(23), agrees well with the recent result of Towner and Hardy [Phys. Rev. C 77, 025501 (2008)].

8.
Phys Rev Lett ; 105(12): 122501, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20867631

ABSTRACT

We extend density-matrix expansions in nuclei to higher orders in derivatives of densities and test their convergence properties. The expansions allow for converting the interaction energies characteristic to finite- and short-range nuclear effective forces into quasilocal density functionals. We also propose a new type of expansion that has excellent convergence properties when benchmarked against the binding energies obtained for the Gogny interaction.

9.
Phys Rev Lett ; 103(1): 012502, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659140

ABSTRACT

We present the self-consistent, nonperturbative analysis of isospin mixing using the nuclear density functional approach and the rediagonalization of the Coulomb interaction in the good-isospin basis. The unphysical isospin violation on the mean-field level, caused by the neutron excess, is eliminated by the proposed method. We find a significant dependence of the magnitude of isospin breaking on the parametrization of the nuclear interaction. A rough correlation has been found between the isospin-mixing parameter and the difference of proton and neutron rms radii.

10.
Phys Rev Lett ; 97(7): 072501, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026223

ABSTRACT

Calculations using realistic mean-field methods suggest the existence of nuclear shapes with tetrahedral Td and/or octahedral Oh symmetries sometimes at only a few hundreds of keV above the ground states in some rare earth nuclei around 156Gd and 160Yb. The underlying single-particle spectra manifest exotic fourfold rather than Kramers's twofold degeneracies. The associated shell gaps are very strong, leading to a new form of shape coexistence in many rare earth nuclei. We present possible experimental evidence of the new symmetries based on the published experimental results--although an unambiguous confirmation will require dedicated experiments.

11.
Phys Rev Lett ; 94(23): 232502, 2005 Jun 17.
Article in English | MEDLINE | ID: mdl-16090465

ABSTRACT

We present a comprehensive mean-field calculation of the Schiff moment of the nucleus 225Ra, the quantity that determines the static electric-dipole moment of the corresponding atom if time-reversal (T) invariance is violated in the nucleus. The calculation breaks all possible intrinsic symmetries of the nuclear mean field and includes, in particular, both exchange and direct terms from the full finite-range T-violating nucleon-nucleon interaction, and the effects of short-range correlations. The resulting Schiff moment, which depends on three unknown T-violating pion-nucleon coupling constants, is much larger than in 199Hg, the isotope with the best current experimental limit on its atomic electric-dipole moment.

12.
Phys Rev Lett ; 93(5): 052501, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15323689

ABSTRACT

Self-consistent solutions for the so-called planar and chiral rotational bands in 132La are obtained for the first time within the Skyrme-Hartree-Fock cranking approach. It is suggested that the chiral rotation cannot exist below a certain critical frequency which under the approximations used is estimated as Planck's omega(crit) approximately 0.5-0.6 MeV. However, the exact values of Planck's omega(crit) may vary, to an extent, depending on the microscopic model used, in particular, through the pairing correlations and/or calculated equilibrium deformations. The existence of the critical frequency is explained in terms of a simple classical model of two gyroscopes coupled to a triaxial rigid body.

13.
Phys Rev Lett ; 88(15): 152501, 2002 Apr 15.
Article in English | MEDLINE | ID: mdl-11955192

ABSTRACT

The latest generation gamma-ray detection system, GAMMASPHERE, coupled with the Microball charged-particle detector, has made possible a new class of nuclear lifetime measurement. For the first time differential lifetime measurements free from common systematic errors for over 15 different nuclei ( >30 rotational bands in various isotopes of Ce, Pr, Nd, Pm, and Sm) have been extracted at high spin within a single experiment. This comprehensive study establishes the effective single-particle transition quadrupole moments in the A approximately 135 light rare-earth region. Detailed comparisons are made with theoretical calculations using the self-consistent cranked mean-field theory which convincingly demonstrates the validity of the additivity of single-particle quadrupole moments in this mass region.

15.
Phys Rev C Nucl Phys ; 54(4): 1832-1842, 1996 Oct.
Article in English | MEDLINE | ID: mdl-9971531
20.
Phys Rev C Nucl Phys ; 52(4): 1827-1839, 1995 Oct.
Article in English | MEDLINE | ID: mdl-9970696
SELECTION OF CITATIONS
SEARCH DETAIL
...