Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(40): 14374-14378, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31386256

ABSTRACT

The sun is the most sustainable light source available on our planet, therefore the direct use of sunlight for photochemistry is extremely appealing. Demonstrated here, for the first time, is that a diverse set of photon-driven transformations can be efficiently powered by solar irradiation with the use of solvent-resistant and cheap luminescent solar concentrator based photomicroreactors. Blue, green, and red reactors can accommodate both homogeneous and multiphase reaction conditions, including photochemical oxidations, photocatalytic trifluoromethylation chemistry, and metallaphotoredox transformations, thus spanning applications over the entire visible-light spectrum. To further illustrate the efficacy of these novel solar reactors, medicinally relevant molecules, such as ascaridole and an intermediate of artemisinin, were prepared as well.

2.
Nanomedicine ; 13(5): 1797-1808, 2017 07.
Article in English | MEDLINE | ID: mdl-28263813

ABSTRACT

A ligand decorated, synthetic polypeptide block copolymer platform with environment-responsive capabilities was designed. We evaluated the potential of this system to function as a polymersome for targeted-delivery of a systemic chemotherapy to tumors. Our system employed click chemistry to provide a pH-responsive polypeptide block that drives nanoparticle assembly, and a ligand (folic acid) conjugated PEG block that targets folate-receptor over-expressing cancer cells. These nanocarriers were found to encapsulate a high loading of conventional chemotherapeutics (e.g. doxorubicin at physiological pH) and release the active therapeutic at lysosomal pH upon cellular uptake. The presence of folic acid on the nanoparticle surface facilitated their active accumulation in folate-receptor-overexpressing cancer cells (KB), compared to untargeted carriers. Folate-targeted nanoparticles loaded with doxorubicin also showed enhanced tumor accumulation in folate-receptor positive KB xenografts, resulting in the suppression of tumor growth in an in vivo hind flank xenograft mouse model.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Nanoparticles , Peptides , Animals , Cell Line, Tumor , Drug Carriers , Folic Acid , Humans , Mice , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...