Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(6): e17382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923652

ABSTRACT

Climate change poses an existential threat to coral reefs. A warmer and more acidic ocean weakens coral ecosystems and increases the intensity of hurricanes. The wind-wave-current interactions during a hurricane deeply change the ocean circulation patterns and hence potentially affect the dispersal of coral larvae and coral disease agents. Here, we modeled the impact of major hurricane Irma (September 2017) on coral larval and stony coral tissue loss disease (SCTLD) connectivity in Florida's Coral Reef. We coupled high-resolution coastal ocean circulation and wave models to simulate the dispersal of virtual coral larvae and disease agents between thousands of reefs. While being a brief event, our results suggest the passage of hurricane Irma strongly increased the probability of long-distance exchanges while reducing larval supply. It created new connections that could promote coral resilience but also probably accelerated the spread of SCTLD by about a month. As they become more intense, hurricanes' double-edged effect will become increasingly pronounced, contributing to increased variability in transport patterns and an accelerated rate of change within coral reef ecosystems.


Subject(s)
Anthozoa , Climate Change , Coral Reefs , Cyclonic Storms , Anthozoa/physiology , Animals , Florida , Larva/physiology , Larva/growth & development , Models, Theoretical
2.
PLoS One ; 19(1): e0296715, 2024.
Article in English | MEDLINE | ID: mdl-38295030

ABSTRACT

Qatar's rapid industrialization, notably in its capital city Doha, has spurred a surge in land reclamation projects, leading to a constriction of the entrance to Doha Bay. By reducing and deflecting the ocean circulation, land reclamation projects have reduced the effective dispersion of wastewater introduced into the bay and hence degraded the water quality. Here, we assess fluctuations in water residence time across three distinct eras (1980, 2000, and 2020) to gauge the impact of successive land reclamation developments. To do this, we couple the multi-scale ocean model SLIM with a Lagrangian model for water residence time within Doha's coastal area. We consider three different topographies of Doha's shoreline to identify which artificial structures contributed the most to increase water residence time. Our findings reveal that the residual ocean circulation in Doha Bay was predominantly impacted by northern developments post-2000. Between 1980 and 2000, the bay's residence time saw a modest rise, of about one day on average. However, this was followed by a substantial surge, of three to six days on average, between 2000 and 2020, which is mostly attributable to The Pearl mega artificial island development. Certain regions of the bay witnessed a tripling of water residence time. Given the ongoing population expansion along the coast, it is anticipated that the growth of artificial structures and coastal reclamation will persist, thereby exacerbating the accumulation of pollutants in the bay. Our findings suggest that artificial offshore structures can exert far-reaching, non-local impacts on water quality, which need to be properly assessed during the planning stages of such developments.


Subject(s)
Bays , Environmental Pollutants , Qatar , Bays/chemistry , Environmental Monitoring
3.
Mar Pollut Bull ; 196: 115652, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862844

ABSTRACT

Small Island Developing States, such as Seychelles, are highly susceptible to oil pollution incidents, with limited infrastructure for detection and mitigation. While an oil spill could significantly impact Seychelle's tourism industry, contributing to ~40% of its GDP, the archipelago's vulnerability remains largely unknown. Here, we developed a high-resolution ocean circulation model for Seychelles Plateau, simulating currents over three years (2018-2020) to model oil spill dispersal to six ecologically and economically significant coastal areas. Our findings reveal distinct seasonality in offshore risk distribution, driven by seasonal fluctuations in atmospheric and oceanic circulations. We show that an oil spill originating from any part of the plateau could potentially impact a sensitive coastal site in less than five days. By identifying high-risk areas, including the major north-south shipping route, we emphasize the importance of close satellite and airborne monitoring for early warnings to protect Seychelles' coastal ecosystems and tourism industry.


Subject(s)
Ecosystem , Petroleum Pollution , Petroleum Pollution/analysis , Seychelles , Oceans and Seas , Ships , Environmental Monitoring
4.
Nanoscale ; 12(21): 11684-11693, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32441288

ABSTRACT

Downscaling of supported Pt structures to the nanoscale is motivated by the augmentation of the catalytic activity and selectivity, which depend on the particle size, shape and coverage. Harsh thermal and chemical conditions generally required for catalytic applications entail an undesirable particle coarsening, and consequently limit the catalyst lifetime. Herein we report an in situ synchrotron study on the stability of supported Pt nanoparticles and their stabilization using atomic layer deposition (ALD) as the stabilizing methodology against particle coarsening. Pt nanoparticles were thermally annealed up to 850 °C in an oxidizing environment while recording in situ synchrotron grazing incidence small angle X-ray scattering (GISAXS) 2D patterns, thereby obtaining continuous information about the particle radius evolution. Al2O3 overcoat as a protective capping layer against coarsening via ALD was investigated. In situ data proved that only 1 cycle of Al2O3 ALD caused an augmentation of the onset temperature for particle coarsening. Moreover, the results showed a dependence of the required overcoat thickness on the initial particle size and distribution, being more efficient (i.e. requiring lower thicknesses) when isolated particles are present on the sample surface. The Pt surface accessibility, which is decisive in catalytic applications, was analyzed using the low energy ion scattering (LEIS) technique, revealing a larger Pt surface accessibility for a sample with Al2O3 overcoat than for a sample without a protective layer after a long-term isothermal annealing.

5.
Nanoscale Adv ; 1(10): 4166-4172, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132102

ABSTRACT

The development of active and stable earth-abundant catalysts for hydrogen and oxygen evolution is one of the requirements for successful production of solar fuels. Atomic Layer Deposition (ALD) is a proven technique for conformal coating of structured (photo)electrode surfaces with such electrocatalyst materials. Here, we show that ALD can be used for the deposition of iron and cobalt phosphate electrocatalysts. A PE-ALD process was developed to obtain cobalt phosphate films without the need for a phosphidation step. The cobalt phosphate material acts as a bifunctional catalyst, able to also perform hydrogen evolution after either a thermal or electrochemical reduction step.

6.
Nanoscale ; 9(45): 18109, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29143033

ABSTRACT

Correction for 'Key role of surface oxidation and reduction processes in the coarsening of Pt nanoparticles' by Eduardo Solano et al., Nanoscale, 2017, 9, 13159-13170.

7.
Nat Commun ; 8(1): 1074, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057871

ABSTRACT

Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl)platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.

8.
Nanoscale ; 9(35): 13159-13170, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28850144

ABSTRACT

Particle coarsening is the main cause for thermal deactivation and lifetime reduction of supported Pt nanocatalysts. Here, Atomic Layer Deposition (ALD) was used to prepare a model system of Pt nanoparticles with high control over the metal loading and the nanoparticle size and coverage. A series of samples with distinct as-deposited size and interparticle spacing was annealed under different oxygen environments while Grazing Incidence Small Angle X-ray Scattering (GISAXS) was employed as in situ tool for monitoring the change in average nanoparticle size. The obtained results revealed three morphological stages during the thermal treatment, which can be explained by (I) the formation of a PtO2 shell on stable Pt nanoparticles at low temperature (below 300 °C), (II) the reduction of the PtO2 shell at moderate temperature (300 to 600 °C), creating mobile species that trigger particle coarsening until a steady morphological state is reached, and (III) the evaporation of PtO2 at high temperature (above 650 °C), causing particle instability and coarsening reactivation. The onset temperatures for stages (II) and (III) were found to depend on the initial particle size and spacing as well as on the O2 partial pressure during annealing, and could be summarized in a morphological stability diagram for Pt nanoparticles. The coarsening model indicates an important role for the reduction of the PtO2 shell in inducing particle coarsening. The key role of the reduction process was corroborated through isothermal experiments under decreasing O2 partial pressure and through forced reduction experiments near room temperature via H2 exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...