Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 28(12): 2744-53, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19653701

ABSTRACT

Parabens are common antimicrobial agents found in thousands of pharmaceuticals and personal care products. Parabens are introduced into aquatic ecosystems from wastewater treatment plant effluents and have been detected in surface waters in the low microgram per liter range. Although these compounds display low toxicity in mammals, paraben toxicity to aquatic organisms has not been investigated. Standardized acute and subchronic endpoints in larval fish (Pimephales promelas) and cladoceran (Daphnia magna) models were examined for seven different parabens (methyl-, ethyl-, isopropyl-, propyl-, isobutyl-, butyl-, benzylparaben), which encompassed a range of log P values. Paraben 48 h median lethal concentration values (LC50) ranged from 4.0 to 24.6 mg/L in D. magna and 3.3 to >160.0 mg/L in fathead minnow. Growth and reproduction in D. magna had lowest-observed-effect concentrations (LOECs) ranging from 0.12 to 9.0 mg/L and 1.5 to 6.0 mg/L, respectively. Fathead minnow growth was adversely affected at levels ranging from 1.0 to 25.0 mg/L. Aquatic toxicity of the parabens was inversely related to lipophilicity, suggesting that responses using standardized endpoints resulted from narcosis. Utilizing toxicity benchmark concentrations (e.g., LC50s, LOECs) for each compound, chemical toxicity distributions, a probabilistic hazard assessment technique, were developed to assess the probabilities of detecting parabens that elicit a response at or below a given concentration. For the responses assessed in the present study, the 5th centile values (the concentration at which 5% of parabens elicit a response) ranged from 15 microg/L to 2.43 mg/L, with D. magna growth eliciting the lowest 5th centile value and acute D. magna mortality eliciting the highest. The distributions demonstrated that at environmentally relevant concentrations in developed countries there is limited acute or subchronic aquatic hazard of parabens to the organisms and responses examined.


Subject(s)
Daphnia/drug effects , Ecology , Parabens/toxicity , Preservatives, Pharmaceutical/toxicity , Risk Assessment , Water Pollutants, Chemical/toxicity , Animals , Cyprinidae , Probability , Toxicity Tests, Acute , Toxicity Tests, Chronic
2.
Environ Toxicol Chem ; 28(12): 2587-97, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19320536

ABSTRACT

Pharmaceuticals and personal care products are being increasingly reported in a variety of biological matrices, including fish tissue; however, screening studies have presently not encompassed broad geographical areas. A national pilot study was initiated in the United States to assess the accumulation of pharmaceuticals and personal care products in fish sampled from five effluent-dominated rivers that receive direct discharge from wastewater treatment facilities in Chicago, Illinois; Dallas, Texas; Orlando, Florida; Phoenix, Arizona; and West Chester, Pennsylvania, USA. Fish were also collected from the Gila River, New Mexico, USA, as a reference condition expected to be minimally impacted by anthropogenic influence. High performance liquid chromatography-tandem mass spectrometry analysis of pharmaceuticals revealed the presence of norfluoxetine, sertraline, diphenhydramine, diltiazem, and carbamazepine at nanogram-per-gram concentrations in fillet composites from effluent-dominated sampling locations; the additional presence of fluoxetine and gemfibrozil was confirmed in liver tissue. Sertraline was detected at concentrations as high as 19 and 545 ng/g in fillet and liver tissue, respectively. Gas chromatography-tandem mass spectrometry analysis of personal care products in fillet composites revealed the presence of galaxolide and tonalide at maximum concentrations of 2,100 and 290 ng/g, respectively, and trace levels of triclosan. In general, more pharmaceuticals were detected at higher concentrations and with greater frequency in liver than in fillet tissues. Higher lipid content in liver tissue could not account for this discrepancy as no significant positive correlations were found between accumulated pharmaceutical concentrations and lipid content for either tissue type from any sampling site. In contrast, accumulation of the personal care products galaxolide and tonalide was significantly related to lipid content. Results suggest that the detection of pharmaceuticals and personal care products was dependent on the degree of wastewater treatment employed.


Subject(s)
Cosmetics/metabolism , Fishes/metabolism , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/metabolism , Animals , Chromatography, High Pressure Liquid , Cosmetics/analysis , Pharmaceutical Preparations/analysis , Pilot Projects , Quality Control , Regression Analysis , Tandem Mass Spectrometry , Waste Disposal, Fluid
3.
Environ Toxicol Chem ; 27(12): 2608-16, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18699703

ABSTRACT

A number of contaminants in municipal effluent discharges are estrogen agonists to fish. Whereas several in vitro and in vivo techniques have been developed to assess the estrogenic activity of these compounds or ambient environmental samples, previous comparisons of the relative sensitivities of these approaches remain inconclusive. We employed a probabilistic hazard assessment approach using chemical toxicity distributions (CTDs) to perform a novel evaluation of relative sensitivities of six common in vitro and in vivo assays. We predicted that there was an 8.3% (human breast ademocarcinoma cell line, MCF-7, assay), 6.3% (yeast estrogen screen assay), or 1.9% (fish hepatocyte vitellogenin, VTG, assay) probability of detecting a compound in aquatic systems that will elicit an estrogenic response at concentrations at or below 0.1 microg/L, suggesting that the MCF-7 assay was the most sensitive in vitro assay evaluated in this study. The probabilities of eliciting the estrogenic response of VTG induction at a concentration less than 0.1 microg/L in rainbow trout, fathead minnow, and Japanese medaka were determined at 29.9, 26.2, and 18.8%, respectively. Thus, rainbow trout VTG induction was the most sensitive in vivo assay assessed. Subsequently, CTDs may provide a useful technique for hazard assessment of chemical classes for which exposure data are limited and for chemicals with common toxicological mechanisms and modes of action.


Subject(s)
Endocrine Disruptors/toxicity , Estrogens/toxicity , Fishes , Water Pollutants, Chemical/toxicity , Animals , Cell Line, Tumor , Estrogens/agonists , Hepatocytes/drug effects , Humans , In Vitro Techniques , Male , Probability , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...