Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(22): 16082-16098, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824813

ABSTRACT

Molecular identification of mixed-species pollen samples has a range of applications in various fields of research. To date, such molecular identification has primarily been carried out via amplicon sequencing, but whole-genome shotgun (WGS) sequencing of pollen DNA has potential advantages, including (1) more genetic information per sample and (2) the potential for better quantitative matching. In this study, we tested the performance of WGS sequencing methodology and publicly available reference sequences in identifying species and quantifying their relative abundance in pollen mock communities. Using mock communities previously analyzed with DNA metabarcoding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq and MiSeq. Taxonomic identifications were based on the Kraken k-mer identification method with reference libraries constructed from full-genome and short read archive data from the NCBI database. We found WGS to be a reliable method for taxonomic identification of pollen with near 100% identification of species in mixtures but generating higher rates of false positives (reads not identified to the correct taxon at the required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quantification of relative species abundance, WGS data provided a stronger correlation between pollen grain proportion and sequence read proportion, but diverged more from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a limitation of WGS-based pollen identification is the lack of representation of plant diversity in publicly available genome databases. As databases improve and costs drop, we expect that eventually genomics methods will become the methods of choice for species identification and quantification of mixed-species pollen samples.

2.
Ecol Lett ; 24(7): 1443-1454, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33942455

ABSTRACT

Animals often change their behaviour in the presence of other species and the environmental context they experience, and these changes can substantially modify the course their populations follow. In the case of animals involved in mutualistic interactions, it is still unclear how to incorporate the effects of these behavioural changes into population dynamics. We propose a framework for using pollinator functional responses to examine the roles of pollinator-pollinator interactions and abiotic conditions in altering the times between floral visits of a focal pollinator. We then apply this framework to a unique foraging experiment with different models that allow resource availability and sublethal exposure to a neonicotinoid pesticide to modify how pollinators forage alone and with co-foragers. We found that all co-foragers interfere with the focal pollinator under at least one set of abiotic conditions; for most species, interference was strongest at higher levels of resource availability and with pesticide exposure. Overall our results highlight that density-dependent responses are often context-dependent themselves.


Subject(s)
Flowers , Pollination , Animals
3.
Mol Ecol ; 28(2): 431-455, 2019 01.
Article in English | MEDLINE | ID: mdl-30118180

ABSTRACT

Pollen DNA metabarcoding-marker-based genetic identification of potentially mixed-species pollen samples-has applications across a variety of fields. While basic species-level pollen identification using standard DNA barcode markers is established, the extent to which metabarcoding (a) correctly assigns species identities to mixes (qualitative matching) and (b) generates sequence reads proportionally to their relative abundance in a sample (quantitative matching) is unclear, as these have not been assessed relative to known standards. We tested the quantitative and qualitative robustness of metabarcoding in constructed pollen mixtures varying in species richness (1-9 species), taxonomic relatedness (within genera to across class) and rarity (5%-100% of grains), using Illumina MiSeq with the markers rbcL and ITS2. Qualitatively, species composition determinations were largely correct, but false positives and negatives occurred. False negatives were typically driven by lack of a barcode gap or rarity in a sample. Species richness and taxonomic relatedness, however, did not strongly impact correct determinations. False positives were likely driven by contamination, chimeric sequences and/or misidentification by the bioinformatics pipeline. Quantitatively, the proportion of reads for each species was only weakly correlated with its relative abundance, in contrast to suggestions from some other studies. Quantitative mismatches are not correctable by consistent scaling factors, but instead are context-dependent on the other species present in a sample. Together, our results show that metabarcoding is largely robust for determining pollen presence/absence but that sequence reads should not be used to infer relative abundance of pollen grains.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Pollen/genetics , Computational Biology , DNA, Plant/classification , Sequence Analysis, DNA , Species Specificity
4.
Appl Plant Sci ; 5(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28690929

ABSTRACT

PREMISE OF THE STUDY: To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks. METHODS: We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases. RESULTS: We successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding. DISCUSSION: Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant-pollinator interactions.

5.
Ann Bot ; 117(2): 341-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26658101

ABSTRACT

BACKGROUND AND AIMS: Most pollinators are generalists and therefore are likely to transfer heterospecific pollen among co-flowering plants. Most work on the impacts of heterospecific pollen deposition on plant fecundity has utilized hand-pollination experiments in greenhouse settings, and we continue to know very little about the reproductive effects of heterospecific pollen in field settings. METHODS: We explored how patterns of naturally deposited heterospecific pollen relate to the reproductive output of Delphinium barbeyi, a common subalpine perennial herb in the Rocky Mountains (USA). We assessed a wide range of naturally occurring heterospecific pollen proportions and pollen load sizes, and linked stigmatic pollen deposition directly to seed set in individual carpels in the field. KEY RESULTS: We found that heterospecific pollen deposition in D. barbeyi is common, but typically found at low levels across stigmas collected in our sites. Neither conspecific nor heterospecific pollen deposition was related to carpel abortion. By contrast, we saw a significant positive relationship between conspecific pollen amount and viable seed production, as well as a significant negative interaction between the effects of conspecific pollen and heterospecific pollen amount, whereby the effect of conspecific pollen on viable seed production became weaker with greater heterospecific deposition on stigmas. CONCLUSIONS: To our knowledge, this is the first demonstration of a relationship between heterospecific pollen and seed production in a field setting. In addition, it is the first report of an interaction between conspecific and heterospecific pollen quantities on seed production. These findings, taken with the results from other studies, suggest that greenhouse hand-pollination studies and field studies should be more tightly integrated in future work to better understand how heterospecific pollen transfer can be detrimental for plant reproduction.


Subject(s)
Delphinium/physiology , Pollen/physiology , Colorado , Flowers/physiology , Pollination , Reproduction/physiology , Seeds/physiology
6.
Environ Manage ; 53(3): 648-59, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390143

ABSTRACT

With >80 million United States households engaged in lawn and gardening activities, increasing sustainability of lawn care is important. Mowing height is an easily manipulated aspect of lawn management. We tested the hypothesis that elevated mowing of tall fescue lawn grass promotes a larger, more diverse community of arthropod natural enemies which in turn provides stronger biological control services, and the corollary hypothesis that doing so also renders the turf itself less suitable for growth of insect pests. Turf-type tall fescue was mowed low (6.4 cm) or high (10.2 cm) for two growing seasons, natural enemy populations were assessed by vacuum sampling, pitfall traps, and ant baits, and predation and parasitism were evaluated with sentinel prey caterpillars, grubs, and eggs. In addition, foliage-feeding caterpillars and root-feeding scarab grubs were confined in the turf to evaluate their performance. Although some predatory groups (e.g., rove beetles and spiders) were more abundant in high-mowed grass, predation rates were uniformly high because ants, the dominant predators, were similarly abundant regardless of mowing height. Lower canopy temperatures in high-mowed grass were associated with slower growth of grass-feeding caterpillars. Higher lawn mowing reduces fuel consumption and yard waste, and promotes a deep, robust root system that reduces need for water and chemical inputs. Although in this study elevated mowing height did not measurably increase the already-high levels of predation, it did suggest additional ways through which bottom-up effects on insect pest growth might interact with natural enemies to facilitate conservation biological control.


Subject(s)
Arthropods/physiology , Ecosystem , Gardening/methods , Pest Control, Biological/methods , Poaceae/growth & development , Analysis of Variance , Animals , Conservation of Natural Resources , Herbivory/physiology , Kentucky , Population Density , Predatory Behavior/physiology
7.
Environ Toxicol Chem ; 31(4): 836-42, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22278879

ABSTRACT

Urban stormwater runoff is composed of a mixture of components, including polycyclic aromatic hydrocarbons, metals, deicing agents, and many others. The fate of these chemicals is often in stormwater detention ponds that are used by amphibians for breeding. Among aquatic organisms, the toxic mechanism for many metals involves interference with active Na(+) and Cl(-) uptake. Addition of cations has been shown to reduce the toxicity of metals among some aquatic organisms through competitive inhibition, but no studies have investigated the interaction between NaCl and Cu among amphibian embryos and larvae. To determine the degree to which NaCl may ameliorate the toxicity of Cu to amphibian embryos and larvae, the authors exposed Hyla chrysoscelis (Cope's gray treefrogs) and Rana (Lithobates) clamitans (green frogs) to seven levels of Cu and NaCl in fully factorial experiments. When exposure was in artificial hard water, Cu was highly toxic to both species (96-h median lethal concentration [LC50] of 44.7 µg/L and 162.6 µg/L for H. chrysoscelis and R. clamitans, respectively). However, approximately 500 mg/L of NaCl eliminated Cu toxicity over the range of Cu concentrations used in the experiments (maximum 150 µg Cu/L for H. chrysoscelis and 325 µg Cu/L for R. clamitans). The current results suggest that NaCl is likely responsible for the toxic effects of NaCl and metal mixtures that might be typical of runoff from road surfaces in northern latitudes.


Subject(s)
Copper/toxicity , Ponds/chemistry , Ranidae/metabolism , Sodium Chloride/pharmacology , Water Pollutants, Chemical/toxicity , Animals , Anura/metabolism , Environmental Exposure , Larva/drug effects , Lethal Dose 50 , Ovum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...