Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Transl Autoimmun ; 4: 100103, 2021.
Article in English | MEDLINE | ID: mdl-34041473

ABSTRACT

Impaired interleukin-2 (IL-2) production and regulatory T-cell dysfunction have been implicated as immunological mechanisms central to the pathogenesis of multiple autoimmune and inflammatory diseases. NKTR-358, a novel regulatory T-cell stimulator, is an investigational therapeutic that selectively restores regulatory T-cell homeostasis in these diseases. We investigated NKTR-358's selectivity for regulatory T-cells, receptor-binding properties, ex vivo and in vivo pharmacodynamics, ability to suppress conventional T-cell proliferation in mice and non-human primates, and functional activity in a murine model of systemic lupus erythematosus. In vitro, NKTR-358 demonstrated decreased affinity for IL-2Rα, IL-2Rß, and IL-2Rαß compared with recombinant human IL-2 (rhIL-2). A single dose of NKTR-358 in cynomolgus monkeys produced a greater than 15-fold increase in regulatory T-cells, and the increase lasted until day 14, while daily rhIL-2 administration for 5 days only elicited a 3-fold increase, which lasted until day 7. Repeated dosing of NKTR-358 over 6 months in cynomolgus monkeys elicited cyclical, robust increases in regulatory T-cells with no loss in drug activity over the course of treatment. Regulatory T-cells isolated from NKTR-358-treated mice displayed a sustained, higher suppression of conventional T-cell proliferation than regulatory T-cells isolated from vehicle-treated mice. NKTR-358 treatment in a mouse model (MRL/MpJ-Faslpr) of systemic lupus erythematosus for 12 weeks maintained elevated regulatory T-cells for the treatment duration and ameliorated disease progression. Together, these results suggest that NKTR-358 has the ability to elicit sustained and preferential proliferation and activation of regulatory T-cells without corresponding effects on conventional T-cells, with improved pharmacokinetics compared with rhIL-2.

2.
Pain Med ; 21(8): 1553-1561, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32150255

ABSTRACT

OBJECTIVE: To evaluate the SUMMIT-07 trial opioid withdrawal results of NKTR-181 (oxycodegol), a new molecular entity mu-opioid receptor agonist. DESIGN: Phase 3, enriched-enrollment, double-blind, randomized-withdrawal study in patients with chronic low back pain (CLBP). SETTING: Conducted in the United States at multiple sites. METHODS: SUMMIT-07 was comprised of five periods: screening; NKTR-181 open-label titration (100 to 400 mg twice daily); 12-week randomized, double-blind study drug (NKTR-181 or placebo); one-week study drug taper; and two-week safety follow-up. Permitted rescue medication included hydrocodone 5 mg/acetaminophen 300 mg (two tablets daily) for two weeks after randomization, then acetaminophen 1.0 gm daily for the remainder of the trial. Signs and symptoms of drug withdrawal were evaluated using the Clinical Opiate Withdrawal Scale (COWS); Subjective Opiate Withdrawal Scale (SOWS); Misuse, Abuse, and Diversion Drug Event Reporting System (MADDERS); and withdrawal-related adverse events. RESULTS: Of 1,190 patients entering titration, one patient had moderate withdrawal (COWS score 13/48 maximum) three days after discontinuing NKTR-181. Of 610 patients randomized (N = 309, NKTR-181; N = 301, placebo), no COWS scores indicating withdrawal at a moderate level or greater (i.e., score ≥13) were observed at any time point. At day 8 after randomization, week 12, and the end of tapering, COWS scores indicating mild withdrawal (<13) were observed in seven (2.4%), one (0.4%), and one (0.5%) placebo patients, respectively, and three (1.0%), one (0.4%), and five (2.3%) NKTR-181 patients, respectively. Mean SOWS scores in both arms were ≤2.8 of 64 possible points at all time points. During the randomized period, of 35 events identified by MADDERS, adjudicators identified 20 possible "withdrawal" events (9 [2.9%] NKTR-181 and 11 [3.7%] placebo). CONCLUSIONS: NKTR-181 exhibited a low rate and severity of opioid withdrawal in SUMMIT-07 patients with CLBP.


Subject(s)
Low Back Pain , Morphinans , Analgesics , Analgesics, Opioid , Animals , Double-Blind Method , Female , Humans , Low Back Pain/drug therapy , Swine , Treatment Outcome
3.
Pain Med ; 21(2): e114-e126, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31553457

ABSTRACT

OBJECTIVE: To evaluate the human abuse potential, pharmacokinetics, pharmacodynamics, and safety of oral NKTR-181 (oxycodegol), a novel full mu-opioid receptor agonist, relative to oral oxycodone. DESIGN: This double-blind, randomized, single-dose, crossover human abuse potential study was conducted in healthy, adult, non-physically dependent recreational opioid users. SETTING: Inpatient clinical research site. SUBJECTS: Seventy-one subjects randomized (95.7% male, 65.2% African American, mean age = 31.7 years). METHODS: The primary objective was to compare two therapeutic doses of NKTR-181 (400 and 600 mg) with 40 and 60 mg of oxycodone and a supratherapeutic dose (1200 mg) of NKTR-181 with 60 mg of oxycodone using visual analog scale (VAS) ratings for Drug Liking "at this moment" (Drug Liking). Secondary objectives included VAS ratings for other subjective measures, and central nervous system (CNS) mu-opioid effects were assessed using pupillometry. Each subject received single oral doses of five treatments and matching placebo. RESULTS: Compared with 40 and 60 mg of oxycodone, the maximum mean Drug Liking score at 400 and 600 mg NKTR-181 was significantly lower, and the rate of onset and extent of Drug Liking for all NKTR-181 doses in the first two hours postdose were also significantly lower. Delayed attenuated Drug Liking and pupillary miosis response following administration of NKTR-181 vs oxycodone were consistent with slower NKTR-181 CNS entry kinetics and mu-opioid receptor binding. No adverse events were rated as severe, and somnolence and dizziness occurred more frequently when subjects received oxycodone. CONCLUSIONS: NKTR-181 at oral doses of 400 and 600 mg showed significantly fewer and less severe subjective effects accepted as representative of opioid abuse potential, such as lower peak Drug Liking in recreational opioid users, than 40 and 60 mg of oxycodone.


Subject(s)
Analgesics, Opioid/administration & dosage , Morphinans/administration & dosage , Administration, Oral , Adult , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Male , Oxycodone/administration & dosage , Recreational Drug Use
4.
Pain Med ; 21(7): 1347-1356, 2020 11 07.
Article in English | MEDLINE | ID: mdl-31361019

ABSTRACT

OBJECTIVE: To evaluate the long-term safety of NKTR-181, a novel mu-opioid receptor agonist that may have reduced human abuse potential, in patients with moderate to severe chronic low back pain (CLBP) or other chronic noncancer pain (CNP). DESIGN: Uncontrolled, multicenter, open-label, long-term study of NKTR-181 comprised of three periods: screening (≤21 days), treatment (52 weeks), and safety follow-up (∼14 days after the last dose of NKTR-181). SETTING: Multicenter, long-term clinical research study. METHODS: NKTR-181 administered at doses of 100-600 mg twice daily (BID) was evaluated in opioid-naïve and opioid-experienced patients. Patients were enrolled de novo or following completion of the randomized, placebo-controlled phase 3 efficacy study (SUMMIT-07). Safety assessments included adverse event documentation, measurements of opioid withdrawal, and clinical laboratory tests. Effectiveness was assessed using the modified Brief Pain Inventory Short Form (mBPI-SF). RESULTS: The study enrolled 638 patients. The most frequently reported treatment-emergent adverse events (TEAEs) were constipation (26%) and nausea (12%). Serious TEAEs, reported in 5% of patients, were deemed by investigators to be unrelated to NKTR-181. There were no deaths or reported cases of respiratory depression. A sustained reduction in mBPI-SF pain intensity and pain interference from baseline to study termination was observed throughout treatment. Only 2% of patients discontinued NKTR-181 due to lack of efficacy, and 11% discontinued due to treatment-related AEs. NKTR-181 doses of up to 600 mg BID were generally well tolerated, and patients experienced low rates of opioid-related adverse events. CONCLUSIONS: The study results support the premise that NKTR-181 is a safe and effective option for patients with moderate to severe CLBP or CNP.


Subject(s)
Chronic Pain , Low Back Pain , Analgesics, Opioid/adverse effects , Chronic Pain/drug therapy , Double-Blind Method , Humans , Low Back Pain/drug therapy , Morphinans , Pain Measurement , Treatment Outcome
6.
Curr Med Res Opin ; 35(9): 1513-1522, 2019 09.
Article in English | MEDLINE | ID: mdl-30932719

ABSTRACT

Objective: To prospectively evaluate the abuse potential of NKTR-181, a novel opioid analgesic, in two phase 3 clinical trials using a newly developed reporting system: the Misuse, Abuse, and Diversion Drug Event Reporting System (MADDERS®).Methods: SUMMIT-07 was an enriched enrollment randomized withdrawal study that examined the safety and efficacy of NKTR-181 across 12 weeks in opioid-naïve subjects with chronic low back pain. SUMMIT-LTS was a 52 week open-label study in opioid-naïve and experienced subjects with chronic low back pain or noncancer pain rolled over from SUMMIT-07 or enrolled de novo. System evaluations were triggered by adverse events of interest and drug accountability discrepancies signaling potentially abuse-related events. Each event was assigned a primary classification and supplementary classification(s) by investigators and by a blinded, independent committee of substance abuse experts (adjudicators). At the final study visit, investigators administered a survey to subjects to identify overlooked events of interest.Results: Seventy-nine (6.6%) of 1189 subjects were associated with 86 events in SUMMIT-07 and 51 (8.0%) of 638 subjects were associated with 59 events in SUMMIT-LTS. Most events were attributed to "Withdrawal" and, primarily in SUMMIT-07, "Therapeutic Error" (unintentional overuse) or "Misuse" (intentional overuse for a therapeutic purpose) of study medication. Adjudicators identified five possible "Abuse" events (three NKTR-181, two placebo) in SUMMIT-07 and four possible "Abuse" events (all NKTR-181) in SUMMIT-LTS.Conclusions: The MADDERS® system discerns potentially abuse-related events and identified low rates of withdrawal and a low risk of abuse potential, diversion or addiction associated with NKTR-181 in phase 3 trials.


Subject(s)
Analgesics, Opioid/adverse effects , Low Back Pain/drug therapy , Morphinans/adverse effects , Opioid-Related Disorders/etiology , Adult , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Prospective Studies
7.
Pain ; 160(6): 1374-1382, 2019 06.
Article in English | MEDLINE | ID: mdl-30747908

ABSTRACT

NKTR-181, a new molecular entity, mu-opioid receptor agonist with an inherently slow rate of central nervous system (CNS) entry, was designed to provide analgesia while reducing abuse potential. This phase 3, enriched-enrollment, randomized-withdrawal trial evaluated the analgesic efficacy, safety, and tolerability of NKTR-181 in patients with chronic low-back pain (CLBP). Adults with moderate-to-severe CLBP refractory to nonopioid analgesics achieving an analgesic NKTR-181 dosage (100-400 mg twice daily) during the open-label titration period were randomized to continued NKTR-181 treatment, double-blind, or switched to placebo. The study was conducted at 55 sites in the United States. Of 1189 patients exposed to NKTR-181 during the titration period, 610 were randomized to NKTR-181 100 to 400 mg every 12 hours or placebo for 12 weeks. The primary outcome measure was change in weekly pain score (scale, 0-10) at 12 weeks from randomization baseline. Secondary outcome measures included responder rates defined by ≥30% and ≥50% improvement in pain score from screening to 12 weeks. Among 610 randomized patients, the mean pain score decreased from 6.73 to 2.32 during open-label titration. After randomization, the least-squares mean change in pain score was +0.92 for NKTR-181 vs +1.46 for placebo (P = 0.002). The ≥30%-improvement responder rate of NKTR-181 vs placebo was 71.2% vs 57.1% (P < 0.001), and the ≥50%-improvement responder rate was 51.1% vs 37.9% (P = 0.001). NKTR-181 was well tolerated with a low incidence (<3%) of CNS-related adverse events during the randomized treatment phase. In patients with moderate-to-severe CLBP, NKTR-181 demonstrated significant analgesic efficacy and a favorable safety/tolerability profile, with a low incidence of CNS adverse events.


Subject(s)
Analgesics, Opioid/therapeutic use , Analgesics/therapeutic use , Low Back Pain/drug therapy , Morphinans/pharmacology , Adult , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Pain Management/methods , Pain Measurement , Receptors, Opioid/drug effects
8.
J Pharmacol Exp Ther ; 363(1): 104-113, 2017 10.
Article in English | MEDLINE | ID: mdl-28778859

ABSTRACT

The increasing availability of prescription opioid analgesics for the treatment of pain has been paralleled by an epidemic of opioid misuse, diversion, and overdose. The development of abuse-deterrent formulations (ADFs) of conventional opioids such as oxycodone and morphine represents an advance in the field and has had a positive but insufficient impact, as most opioids are still prescribed in highly abusable, non-ADF forms, and abusers can tamper with ADF medications to liberate the abusable opioid within. The abuse liability of mu-opioid agonists appears to be dependent on their rapid rate of entry into the central nervous system (CNS), whereas analgesic activity appears to be a function of CNS exposure alone, suggesting that a new opioid agonist with an inherently low rate of influx across the blood-brain barrier could mediate analgesia with low abuse liability, regardless of formulation or route of administration. NKTR-181 is a novel, long-acting, selective mu-opioid agonist with structural properties that reduce its rate of entry across the blood-brain barrier compared with traditional mu-opioid agonists. NKTR-181 demonstrated maximum analgesic activity comparable to that of oxycodone in hot-plate latency and acetic-acid writhing models. NKTR-181 was distinguishable from oxycodone by its reduced abuse potential in self-administration and progressive-ratio break point models, with behavioral effects similar to those of saline, as well as reduced CNS side effects as measured by the modified Irwin test. The in vitro and in vivo studies presented here demonstrate that NKTR-181 is the first selective mu-opioid agonist to combine analgesic efficacy and reduced abuse liability through the alteration of brain-entry kinetics.


Subject(s)
Analgesics, Opioid/pharmacology , Morphinans/pharmacology , Substance-Related Disorders/prevention & control , Analgesics, Opioid/chemistry , Analgesics, Opioid/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Caco-2 Cells , Dose-Response Relationship, Drug , Drug Compounding , Humans , Male , Morphinans/chemistry , Morphinans/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism , Time Factors
9.
PLoS One ; 12(7): e0179431, 2017.
Article in English | MEDLINE | ID: mdl-28678791

ABSTRACT

Cytokines are potent immune modulating agents but are not ideal medicines in their natural form due to their short half-life and pleiotropic systemic effects. NKTR-214 is a clinical-stage biologic that comprises interleukin-2 (IL2) protein bound by multiple releasable polyethylene glycol (PEG) chains. In this highly PEG-bound form, the IL2 is inactive; therefore, NKTR-214 is a biologic prodrug. When administered in vivo, the PEG chains slowly release, creating a cascade of increasingly active IL2 protein conjugates bound by fewer PEG chains. The 1-PEG-IL2 and 2-PEG-IL2 species derived from NKTR-214 are the most active conjugated-IL2 species. Free-IL2 protein is undetectable in vivo as it is eliminated faster than formed. The PEG chains on NKTR-214 are located at the region of IL2 that contacts the alpha (α) subunit of the heterotrimeric IL2 receptor complex, IL2Rαßγ, reducing its ability to bind and activate the heterotrimer. The IL2Rαßγ complex is constitutively expressed on regulatory T cells (Tregs). Therefore, without the use of mutations, PEGylation reduces the affinity for IL2Rαßγ to a greater extent than for IL2Rßγ, the receptor complex predominant on CD8 T cells. NKTR-214 treatment in vivo favors activation of CD8 T cells over Tregs in the tumor microenvironment to provide anti-tumor efficacy in multiple syngeneic models. Mechanistic modeling based on in vitro and in vivo kinetic data provides insight into the mechanism of NKTR-214 pharmacology. The model reveals that conjugated-IL2 protein derived from NKTR-214 occupy IL-2Rßγ to a greater extent compared to free-IL2 protein. The model accurately describes the sustained in vivo signaling observed after a single dose of NKTR-214 and explains how the properties of NKTR-214 impart a unique kinetically-controlled immunological mechanism of action.


Subject(s)
Immunotherapy/methods , Interleukin-2/analogs & derivatives , Neoplasms/therapy , Polyethylene Glycols/pharmacology , Receptors, Interleukin-2/agonists , Algorithms , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Drug Liberation , Female , Interleukin Receptor Common gamma Subunit/agonists , Interleukin Receptor Common gamma Subunit/metabolism , Interleukin-2/pharmacokinetics , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit/agonists , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-2 Receptor beta Subunit/agonists , Interleukin-2 Receptor beta Subunit/metabolism , Kinetics , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Models, Theoretical , Neoplasms/immunology , Neoplasms/metabolism , Phosphorylation/drug effects , Polyethylene Glycols/pharmacokinetics , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Receptors, Interleukin-2/metabolism , STAT5 Transcription Factor/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
10.
Clin Cancer Res ; 22(3): 680-90, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26832745

ABSTRACT

PURPOSE: Aldesleukin, recombinant human IL2, is an effective immunotherapy for metastatic melanoma and renal cancer, with durable responses in approximately 10% of patients; however, severe side effects limit maximal dosing and thus the number of patients able to receive treatment and potential cure. NKTR-214 is a prodrug of conjugated IL2, retaining the same amino acid sequence as aldesleukin. The IL2 core is conjugated to 6 releasable polyethylene glycol (PEG) chains. In vivo, the PEG chains slowly release to generate active IL2 conjugates. EXPERIMENTAL DESIGN: We evaluated the bioactivity and receptor binding of NKTR-214 and its active IL2 conjugates in vitro; the tumor immunology, tumor pharmacokinetics, and efficacy of NKTR-214 as a single agent and in combination with anti-CTLA-4 antibody in murine tumor models. Tolerability was evaluated in non-human primates. RESULTS: In a murine melanoma tumor model, the ratio of tumor-killing CD8(+) T cells to Foxp3(+) regulatory T cells was greater than 400 for NKTR-214 compared with 18 for aldesleukin, supporting preferential activation of the IL2 receptor beta over IL2 receptor alpha, due to the location of PEG molecules. NKTR-214 provides a 500-fold greater exposure of the tumor to conjugated IL2 compared with aldesleukin. NKTR-214 showed efficacy as a single agent and provided durable immunity that was resistant to tumor rechallenge in combination with anti-CTLA-4 antibody. NKTR-214 was well tolerated in non-human primates. CONCLUSIONS: These data support further evaluation of NKTR-214 in humans for a variety of tumor types, adding to the repertoire of potent and potentially curative cancer immunotherapies.


Subject(s)
Antineoplastic Agents/pharmacology , Interleukin-2/analogs & derivatives , Neoplasms/metabolism , Neoplasms/pathology , Polyethylene Glycols/pharmacology , Prodrugs , Receptors, Interleukin-2/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Antineoplastic Agents/chemistry , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Female , Humans , Immunologic Memory , Interleukin-2/chemistry , Interleukin-2/pharmacology , Lymphocytes, Tumor-Infiltrating , Male , Melanoma, Experimental , Mice , Models, Molecular , Molecular Conformation , Neoplasms/drug therapy , Neoplasms/immunology , Polyethylene Glycols/chemistry , Protein Binding , Receptors, Interleukin-2/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Burden/drug effects
11.
Sci Transl Med ; 5(178): 178ra39, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23536011

ABSTRACT

The fibroblast growth factor (FGF) pathway promotes tumor growth and angiogenesis in many solid tumors. Although there has long been interest in FGF pathway inhibitors, development has been complicated: An effective FGF inhibitor must block the activity of multiple mitogenic FGF ligands but must spare the metabolic hormone FGFs (FGF-19, FGF-21, and FGF-23) to avoid unacceptable toxicity. To achieve these design requirements, we engineered a soluble FGF receptor 1 Fc fusion protein, FP-1039. FP-1039 binds tightly to all of the mitogenic FGF ligands, inhibits FGF-stimulated cell proliferation in vitro, blocks FGF- and vascular endothelial growth factor (VEGF)-induced angiogenesis in vivo, and inhibits in vivo growth of a broad range of tumor types. FP-1039 antitumor response is positively correlated with RNA levels of FGF2, FGF18, FGFR1c, FGFR3c, and ETV4; models with genetic aberrations in the FGF pathway, including FGFR1-amplified lung cancer and FGFR2-mutated endometrial cancer, are particularly sensitive to FP-1039-mediated tumor inhibition. FP-1039 does not appreciably bind the hormonal FGFs, because these ligands require a cell surface co-receptor, klotho or ß-klotho, for high-affinity binding and signaling. Serum calcium and phosphate levels, which are regulated by FGF-23, are not altered by administration of FP-1039. By selectively blocking nonhormonal FGFs, FP-1039 treatment confers antitumor efficacy without the toxicities associated with other FGF pathway inhibitors.


Subject(s)
Fibroblast Growth Factors/antagonists & inhibitors , Immunoglobulin G/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Oncogene Proteins, Fusion/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/therapeutic use , Calcium/blood , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Phosphates/blood , Recombinant Fusion Proteins
12.
Science ; 320(5877): 807-11, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18467591

ABSTRACT

To understand the system of secreted proteins and receptors involved in cell-cell signaling, we produced a comprehensive set of recombinant secreted proteins and the extracellular domains of transmembrane proteins, which constitute most of the protein components of the extracellular space. Each protein was tested in a suite of assays that measured metabolic, growth, or transcriptional responses in diverse cell types. The pattern of responses across assays was analyzed for the degree of functional selectivity of each protein. One of the highly selective proteins was a previously undescribed ligand, designated interleukin-34 (IL-34), which stimulates monocyte viability but does not affect responses in a wide spectrum of other assays. In a separate functional screen, we used a collection of extracellular domains of transmembrane proteins to discover the receptor for IL-34, which was a known cytokine receptor, colony-stimulating factor 1 (also called macrophage colony-stimulating factor) receptor. This systematic approach is thus useful for discovering new ligands and receptors and assessing the functional selectivity of extracellular regulatory proteins.


Subject(s)
Extracellular Space/chemistry , Interleukins/isolation & purification , Receptors, Interleukin/isolation & purification , Animals , Cloning, Molecular , DNA, Complementary , Humans , Interleukins/metabolism , Interleukins/physiology , Membrane Proteins/isolation & purification , Membrane Proteins/physiology , Protein Structure, Tertiary , Proteome , Receptors, Interleukin/physiology
13.
J Immunol ; 179(3): 1872-83, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17641054

ABSTRACT

TNF is a pleiotropic cytokine required for normal development and function of the immune system; however, TNF overexpression also induces inflammation and is associated with autoimmune diseases. TNF exists as both a soluble and a transmembrane protein. Genetic studies in mice have suggested that inflammation in disease models involves soluble TNF (solTNF) and that maintenance of innate immune function involves transmembrane TNF (tmTNF). These findings imply that selective pharmacologic inhibition of solTNF may be anti-inflammatory and yet preserve innate immunity to infection. To address this hypothesis, we now describe dominant-negative inhibitors of TNF (DN-TNFs) as a new class of biologics that selectively inhibits solTNF. DN-TNFs blocked solTNF activity in human and mouse cells, a human blood cytokine release assay, and two mouse arthritis models. In contrast, DN-TNFs neither inhibited the activity of human or mouse tmTNF nor suppressed innate immunity to Listeria infection in mice. These results establish DN-TNFs as the first selective inhibitors of solTNF, demonstrate that inflammation in mouse arthritis models is primarily driven by solTNF, and suggest that the maintenance of tmTNF activity may improve the therapeutic index of future anti-inflammatory agents.


Subject(s)
Arthritis, Experimental/immunology , Immunity, Innate , Inflammation Mediators/physiology , Listeriosis/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/physiology , Animals , Arthritis, Experimental/pathology , Arthritis, Experimental/prevention & control , Caspase Inhibitors , Caspases/metabolism , Cell Line, Tumor , Female , Humans , Immunity, Innate/genetics , Inflammation Mediators/metabolism , Interleukin-8/antagonists & inhibitors , Interleukin-8/blood , Interleukin-8/metabolism , Listeriosis/genetics , Listeriosis/pathology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/biosynthesis , Membrane Proteins/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Paracrine Communication/immunology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/biosynthesis , Recombinant Proteins/pharmacology , Solubility , Tumor Necrosis Factor-alpha/genetics , U937 Cells
14.
Drug Discov Today ; 11(15-16): 718-24, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16846799

ABSTRACT

The concepts and philosophies of HTS can be productively applied to the discovery of new biopharmaceuticals. It is now possible, comprehensively and systematically, to enumerate, clone, produce and screen all secreted proteins, by building upon knowledge accumulated over the past two decades in HTS, genomics and parallel protein expression technologies. Each of the crucial operational components (comprehensive and high-quality cDNA library construction, proper protein-sequence classification, high-throughput protein production, medically relevant assays, state-of-the-art screening and data management) must be optimized to increase the chances of success. In this review, we draw comparisons between small-molecule and protein screening to illuminate common underlying principles as well as differences between the two operations.


Subject(s)
Biopharmaceutics/methods , Drug Design , Technology, Pharmaceutical/methods , Animals , Drug Evaluation, Preclinical/methods , Drug Industry/methods , Humans
15.
Science ; 301(5641): 1895-8, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14512626

ABSTRACT

Tumor necrosis factor (TNF) is a key regulator of inflammatory responses and has been implicated in many pathological conditions. We used structure-based design to engineer variant TNF proteins that rapidly form heterotrimers with native TNF to give complexes that neither bind to nor stimulate signaling through TNF receptors. Thus, TNF is inactivated by sequestration. Dominant-negative TNFs represent a possible approach to anti-inflammatory biotherapeutics, and experiments in animal models show that the strategy can attenuate TNF-mediated pathology. Similar rational design could be used to engineer inhibitors of additional TNF superfamily cytokines as well as other multimeric ligands.


Subject(s)
Protein Engineering , Signal Transduction , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , Amino Acid Substitution , Animals , Antigens, CD/metabolism , Apoptosis , Arthritis, Experimental/drug therapy , Biopolymers , Caspases/metabolism , Cell Line , Cell Nucleus/metabolism , Computer Simulation , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Galactosamine/pharmacology , HeLa Cells , Humans , Liver/drug effects , NF-kappa B/metabolism , Point Mutation , Rats , Receptors, Tumor Necrosis Factor/metabolism , Receptors, Tumor Necrosis Factor, Type I , Receptors, Tumor Necrosis Factor, Type II , Transcription Factor RelA , Transcription, Genetic , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...