Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ultrasonics ; 140: 107313, 2024 May.
Article in English | MEDLINE | ID: mdl-38603904

ABSTRACT

The use of Carbon Fibre Reinforced Plastic (CFRP) composite materials for critical components has significantly surged within the energy and aerospace industry. With this rapid increase in deployment, reliable post-manufacturing Non-Destructive Evaluation (NDE) is critical for verifying the mechanical integrity of manufactured components. To this end, an automated Ultrasonic Testing (UT) NDE process delivered by an industrial manipulator was developed, greatly increasing the measurement speed, repeatability, and locational precision, while increasing the throughput of data generated by the selected NDE modality. Data interpretation of UT signals presents a current bottleneck, as it is still predominantly performed manually in industrial settings. To reduce the interpretation time and minimise human error, this paper presents a two-stage automated NDE evaluation pipeline consisting of a) an intelligent gating process and b) an autoencoder (AE) defect detector. Both stages are based on an unsupervised method, leveraging density-based spatial clustering of applications with noise clustering method for robust automated gating and undefective UT data for the training of the AE architecture. The AE network trained on ultrasonic B-scan data was tested for performance on a set of reference CFRP samples with embedded and manufactured defects. The developed model is rapid during inference, processing over 2000 ultrasonic B-scans in 1.26 s with the area under the receiver operating characteristic curve of 0.922 in simple and 0.879 in complex geometry samples. The benefits and shortcomings of the presented methods are discussed, and uncertainties associated with the reported results are evaluated.

2.
Abdom Radiol (NY) ; 49(2): 651-661, 2024 02.
Article in English | MEDLINE | ID: mdl-38214722

ABSTRACT

PURPOSE: Abdominal ultrasound screening requires the capture of multiple standardized plane views as per clinical guidelines. Currently, the extent of adherence to such guidelines is dependent entirely on the skills of the sonographer. The use of neural network classification has the potential to better standardize captured plane views and streamline plane capture reducing the time burden on operators by combatting operator variability. METHODS: A dataset consisting of 16 routine upper abdominal ultrasound scans from 64 patients was used to test the classification accuracy of 9 neural networks. These networks were tested on both a small, idealised subset of 800 samples as well as full video sweeps of the region of interest using stratified sampling and transfer learning. RESULTS: The highest validation accuracy attained by both GoogLeNet and InceptionV3 is 83.9% using transfer learning and the large sample set of 26,294 images. A top-2 accuracy of 95.1% was achieved using InceptionV3. Alexnet attained the highest accuracy of 79.5% (top-2 of 91.5%) for the smaller sample set of 800 images. The neural networks evaluated during this study were also successfully able to identify problematic individual cross sections such as between kidneys, with right and left kidney being accurately identified 78.6% and 89.7%, respectively. CONCLUSION: Dataset size proved a more important factor in determining accuracy than network selection with more complex neural networks providing higher accuracy as dataset size increases and simpler linear neural networks providing better results where the dataset is small.


Subject(s)
Abdomen , Neural Networks, Computer , Humans , Ultrasonography , Abdomen/diagnostic imaging , Kidney
3.
Article in English | MEDLINE | ID: mdl-38082657

ABSTRACT

OBJECTIVE: Locating the radial artery reliably is a key challenge in reducing patient risks from complications in Trans-Radial Access, which is an important clinical method for catheterization, cardiac monitoring, and neuroendovascular procedures. New tactile sensing technology is being developed to bridge the skill, cost, and performance gap between ultrasonic needle guidance, and manual palpation, for use in developing countries. This paper further develops tactile artery localization with a novel algorithm for arterial localization based on the properties of a curved tactile sensor array. METHODS: Using tactile sensor insensitivity to shear loading, coupled with a radial pulse wave propagation path, the position of the artery can be found at the intersection of a normal and tangential vector from the array corresponding to maximum and minimum pulse pressure measurement locations respectively. This was validated in a simple silicone phantom study Results: The proposed method measured with MAE= 0.58±0.25mm whilst the artery is within range of the tactile array, compared with 0.81±0.57mm for a comparative method of simple pulse localization. This showed improvement in arterial localization and repeatability, and was within 1 arterial radius, expected to reduce the risk of missing the artery, or perforating the side wall.Clinical Relevance- Robust and repeatable arterial localization is important for reducing the failure rate of trans-radial (and other arterial) procedures, and thus reducing the risk of harmful complications.


Subject(s)
Radial Artery , Humans , Blood Pressure , Heart Rate , Monitoring, Physiologic , Phantoms, Imaging
4.
Article in English | MEDLINE | ID: mdl-38082737

ABSTRACT

Machine learning in medical ultrasound faces a major challenge: the prohibitive costs of producing and annotating clinical data. Optimizing the data collection and annotation will improve model training efficiency, reducing project cost and times. This paper prescribes a 2-phase method for cost optimization based on iterative accuracy/sample size predictions, and active learning for annotation optimization. METHODS: Using public breast, fetal, and lung ultrasound datasets we can: Optimize data collection by statistically predicting accuracy for a desired dataset size; and optimize labeling efficiency using Active Learning, where predictions with lowest certainty were labelled manually using feedback. A practical case study on BUSI data was used to demonstrate the method prescribed in this work. RESULTS: With small data subsets, ~10%, dataset size vs. final accuracy relations can be predicted with diminishing results after 50% usage. Manual annotation was reduced by ~10% using active learning to focus the annotation. CONCLUSION: This led to cost reductions of 50%-66%, depending on requirements and initial cost model, on BUSI dataset with a negligible accuracy drop of 3.75% from theoretical maximums.Clinical Relevance- This work provides methodology to optimize dataset size and manual data labelling, this allows generation of cost-effective datasets, of interest to all, but particularly for financially limited trials and feasibility studies, Reducing the time burden on annotating clinicians.


Subject(s)
Machine Learning , Problem-Based Learning , Ultrasonography , Data Collection
5.
J Imaging ; 9(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37888325

ABSTRACT

Automated visual inspection has made significant advancements in the detection of cracks on the surfaces of concrete structures. However, low-quality images significantly affect the classification performance of convolutional neural networks (CNNs). Therefore, it is essential to evaluate the suitability of image datasets used in deep learning models, like Visual Geometry Group 16 (VGG16), for accurate crack detection. This study explores the sensitivity of the BRISQUE method to different types of image degradations, such as Gaussian noise and Gaussian blur. By evaluating the performance of the VGG16 model on these degraded datasets with varying levels of noise and blur, a correlation is established between image degradation and BRISQUE scores. The results demonstrate that images with lower BRISQUE scores achieve higher accuracy, F1 score, and Matthew's correlation coefficient (MCC) in crack classification. The study proposes the implementation of a BRISQUE score threshold (BT) to optimise training and testing times, leading to reduced computational costs. These findings have significant implications for enhancing accuracy and reliability in automated visual inspection systems for crack detection and structural health monitoring (SHM).

6.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850611

ABSTRACT

Guided wave Electro Magnetic Acoustic Transducers (EMATs) offer an elegant method for structural inspection and localisation relative to geometric features, such as welds. This paper presents a Lorentz force EMAT construction framework, where a numerical model has been developed for optimising Printed Circuit Board (PCB) coil parameters as well as a methodology for optimising magnet array parameters to a user's needs. This framework was validated experimentally to show its effectiveness through comparison to an industry built EMAT. The framework was then used to design and manufacture a Side-Shifted Unidirectional Periodic Permanent Magnet (PPM) EMAT for use on a mobile robotic system, which uses guided waves for ranging to build internal maps of a given subject, identifying welded sections, defects and other structural elements. The unidirectional transducer setup was shown to operate in simulation and was then manufactured to compare to the bidirectional transmitter and two-receiver configurations on a localisation system. The unidirectional setup was shown to have clear benefits over the bidirectional setup for mapping an unknown environment using guided waves as there were no dead spots of mapping where signal direction could not be interpreted. Additionally, overall package size was significantly reduced, which in turn allows more measurements to be taken within confined spaces and increases robotic crawler mobility.

7.
Ultrasonics ; 130: 106917, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36623371

ABSTRACT

Lamb wave excitation at high-frequency-thickness products offers a potential solution for high-resolution guided wave testing. The method is attractive for crack imaging and corrosion mapping, especially in hidden locations where direct access is limited. However, multiple modes may propagate, complicating signal interpretation, which is undesirable. In this work, a systematic approach is presented, in an effort to determine the influence of the key parameters related to single higher order Lamb wave mode excitation using a conventional linear array transducer. Specifically, a linear time delay law is used to enhance the targeted mode, while the array's length, pitch and apodisation profile remain to be optimally selected. First, an analytical solution is derived based on modal analysis. This provides a natural decomposition of the amplitude of a guided wave mode into the product of the response of a single element and the excitation spectrum. Then, a key observation is made, associating the excitation spectrum to the directivity function for bulk wave phased array steering. This allows the application of well-established phased array analysis tools to guided wave phased array excitation. In light of this fact, minimisation of the spectrum's bandwidth, elimination of the grating lobes and derivation of an apodisation profile are performed, to enhance the purity of the targeted mode. Finally, experiments conducted on an aluminium plate verify the above theoretical results. The Full Matrix is acquired, and all signals are reconstructed synthetically.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 828-831, 2022 07.
Article in English | MEDLINE | ID: mdl-36085644

ABSTRACT

This paper presents a new method of measuring non-invasive blood pressure at the radial artery based on oscillometry and tonometry. A localized capacitive tactile sensor array is used with a novel algorithm based on waveform features for optimizing oscillometry ratios. A novel tonometer is presented with typically 1% base measurement error, with sensor errors compensated using a custom error model, and applied to blood pressure measurement at the radial artery. The tonometer gives a direct arterial waveform, and uses a manual pressure sweep to determine blood pressure. Key points on the oscillogram are correlated with optimal ratios for minimizing mean errors and standard deviation for an individual. This paper details an initial assessment into the dominant sources of error, for the purpose of determining feasibility and directing future research. Over a limited clinical trial of Np = 20, No = 180, the reported BP accuracy is MAE = 0.61/0.38mmHg and 1SD = 7.14/5.91mmHg for systolic and diastolic measurements respectively. The average load on the patient is in the order of 5N, compared with around 1000N for a brachial cuff, which represents a clear improvement in patient comfort. This is a positive result, indicating larger scale performance within AAMI and BHS standards, and stands as a useful benchmark for further development of the system into a clinical product for rapid and comfortable BP measurement. Clinical Relevance This paper demonstrated that direct tonometry can measure blood pressure if sensor error is compensated by the designer. This method uses 200x less load than conventional cuffs suitable for long term and supine use.


Subject(s)
Diagnostic Techniques, Cardiovascular , Radial Artery , Blood Pressure , Blood Pressure Determination , Humans , Oscillometry
9.
IEEE Trans Med Imaging ; 39(5): 1295-1305, 2020 05.
Article in English | MEDLINE | ID: mdl-31613753

ABSTRACT

Breast lesion localization using tactile imaging is a new and developing direction in medical science. To achieve the goal, proper image reconstruction and image registration can be a valuable asset. In this paper, a new approach of the segmentation-based image surface reconstruction algorithm is used to reconstruct the surface of a breast phantom. In breast tissue, the sub-dermal vein network is used as a distinguishable pattern for reconstruction. The proposed image capturing device contacts the surface of the phantom, and surface deformation will occur due to applied force at the time of scanning. A novel force based surface rectification system is used to reconstruct a deformed surface image to its original structure. For the construction of the full surface from rectified images, advanced affine scale-invariant feature transform (A-SIFT) is proposed to reduce the affine effect in time when data capturing. Camera position based image stitching approach is applied to construct the final original non-rigid surface. The proposed model is validated in theoretical models and real scenarios, to demonstrate its advantages with respect to competing methods. The result of the proposed method, applied to path reconstruction, ends with a positioning accuracy of 99.7%.


Subject(s)
Breast Neoplasms , Algorithms , Breast Neoplasms/diagnostic imaging , Diagnostic Imaging , Female , Humans , Image Processing, Computer-Assisted , Models, Theoretical , Phantoms, Imaging
10.
Article in English | MEDLINE | ID: mdl-23357908

ABSTRACT

Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed.

11.
Ultrasonics ; 51(3): 258-69, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21094966

ABSTRACT

A computer simulator, to facilitate the design and assessment of a reconfigurable, air-coupled ultrasonic scanner is described and evaluated. The specific scanning system comprises a team of remote sensing agents, in the form of miniature robotic platforms that can reposition non-contact Lamb wave transducers over a plate type of structure, for the purpose of non-destructive evaluation (NDE). The overall objective is to implement reconfigurable array scanning, where transmission and reception are facilitated by different sensing agents which can be organised in a variety of pulse-echo and pitch-catch configurations, with guided waves used to generate data in the form of 2-D and 3-D images. The ability to reconfigure the scanner adaptively requires an understanding of the ultrasonic wave generation, its propagation and interaction with potential defects and boundaries. Transducer behaviour has been simulated using a linear systems approximation, with wave propagation in the structure modelled using the local interaction simulation approach (LISA). Integration of the linear systems and LISA approaches are validated for use in Lamb wave scanning by comparison with both analytic techniques and more computationally intensive commercial finite element/difference codes. Starting with fundamental dispersion data, the paper goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries, before presenting a theoretical image obtained from a team of sensing agents based on the current generation of sensors and instrumentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...