Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794383

ABSTRACT

The growing issue of salinity is a significant threat to global agriculture, affecting diverse regions worldwide. Nitric oxide (NO) serves as an essential signal molecule in regulating photosynthetic performance under physiological and stress conditions. The present study reveals the protective effects of different concentrations (0-300 µM) of sodium nitroprusside (SNP, a donor of NO) on the functions of the main complexes within the photosynthetic apparatus of maize (Zea mays L. Kerala) under salt stress (150 mM NaCl). The data showed that SNP alleviates salt-induced oxidative stress and prevents changes in the fluidity of thylakoid membranes (Laurdan GP) and energy redistribution between the two photosystems (77K chlorophyll fluorescence ratio F735/F685). Chlorophyll fluorescence measurements demonstrated that the foliar spray with SNP under salt stress prevents the decline of photosystem II (PSII) open reaction centers (qP) and improves their efficiency (Φexc), thereby influencing QA- reoxidation. The data also revealed that SNP protects the rate constants for two pathways of QA- reoxidation (k1 and k2) from the changes caused by NaCl treatment alone. Additionally, there is a predominance of QA- interaction with plastoquinone in comparison to the recombination of electrons in QA QB- with the oxygen-evolving complex (OEC). The analysis of flash oxygen evolution showed that SNP treatment prevents a salt-induced 10% increase in PSII centers in the S0 state, i.e., protects the initial S0-S1 state distribution, and the modification of the Mn cluster in the OEC. Moreover, this study demonstrates that SNP-induced defense occurs on both the donor and acceptor sides of the PSII, leading to the protection of overall photosystems performance (PIABS) and efficient electron transfer from the PSII donor side to the reduction of PSI end electron acceptors (PItotal). This study clearly shows that the optimal protection under salt stress occurs at approximately 50-63 nmoles NO/g FW in leaves, corresponding to foliar spray with 50-150 µM SNP.

2.
Plants (Basel) ; 12(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38140494

ABSTRACT

Climate change and the increased need for crop production highlight the urgent importance of introducing crops with increased tolerance to adverse environmental conditions [...].

3.
Plants (Basel) ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375865

ABSTRACT

Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment-protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties. The results demonstrated that Gizda plants are more tolerant to severe dehydration compared to Fermer, as evidenced by the lower decrease in leaf water and pigment content, lower inhibition of photosystem II (PSII) photochemistry and dissipation of thermal energy, as well as lower dehydrins' content. Some of defense mechanisms by which Gizda variety can tolerate drought stress involve the maintenance of decreased chlorophyll content in leaves, increased fluidity of the thylakoid membranes causing structural alterations in the photosynthetic apparatus, as well as dehydration-induced accumulation of early light-induced proteins (ELIPs), an increased capacity for PSI cyclic electron transport and enhanced antioxidant enzyme activity (SOD and APX), thus alleviating oxidative damage. Furthermore, the leaf content of total phenols, flavonoids, and lipid-soluble antioxidant metabolites was higher in Gizda than in Fermer.

4.
Plants (Basel) ; 12(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36840183

ABSTRACT

In this study, the impacts of the foliar application of different sodium nitroprusside (SNP, as a donor of nitric oxide) concentrations (0-300 µM) on two sorghum varieties (Sorghum bicolor L. Albanus and Sorghum bicolor L. Shamal) under salt stress (150 mM NaCl) were investigated. The data revealed that salinity leads to an increase in oxidative stress markers and damage of the membrane integrity, accompanied by a decrease in the chlorophyll content, the open photosystem II (PSII) centers, and the performance indexes (PI ABS and PI total), as well as having an influence on the electron flux reducing photosystem I (PSI) end acceptors (REo/RC). Spraying with SNP alleviated the NaCl toxicity on the photosynthetic functions; the protection was concentration-dependent, and greater in Shamal than in Albanus, i.e., variety specific. Furthermore, the experimental results revealed that the degree of SNP protection under salt stress also depends on the endogenous nitric oxide (NO) amount in leaves, the number of active reaction centers per PSII antenna chlorophylls, the enhanced electron flux reducing end acceptors at the acceptor side of PSI, as well as the stimulation of the cyclic electron transport around PSI. The results showed better protection in both varieties of sorghum for SNP concentrations up to 150 µM, which corresponds to about a 50% increase in the endogenous NO leaf content in comparison to the control plants. Our study provides valuable insight into the molecular mechanisms underlying SNP-induced salt tolerance in sorghum varieties and might be a practical approach to correcting salt intolerance.

5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834517

ABSTRACT

The present study shows the effect of salinity on the functions of thylakoid membranes from two hybrid lines of Paulownia: Paulownia tomentosa x fortunei and Paulownia elongate x elongata, grown in a Hoagland solution with two NaCl concentrations (100 and 150 mM) and different exposure times (10 and 25 days). We observed inhibition of the photochemical activities of photosystem I (DCPIH2 → MV) and photosystem II (H2O → BQ) only after the short treatment (10 days) with the higher NaCl concentration. Data also revealed alterations in the energy transfer between pigment-protein complexes (fluorescence emission ratios F735/F685 and F695/F685), the kinetic parameters of the oxygen-evolving reactions (initial S0-S1 state distribution, misses (α), double hits (ß) and blocked centers (SB)). Moreover, the experimental results showed that after prolonged treatment with NaCl Paulownia tomentosa x fortunei adapted to the higher concentration of NaCl (150 mM), while this concentration is lethal for Paulownia elongata x elongata. This study demonstrated the relationship between the salt-induced inhibition of the photochemistry of both photosystems and the salt-induced changes in the energy transfer between the pigment-protein complexes and the alterations in the Mn cluster of the oxygen-evolving complex under salt stress.


Subject(s)
Photosystem II Protein Complex , Thylakoids , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Salinity , Sodium Chloride/pharmacology , Photosynthesis , Energy Transfer , Oxygen/metabolism , Chlorophyll/pharmacology
6.
Plants (Basel) ; 13(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38202426

ABSTRACT

Nitric oxide (NO) is an important molecule in regulating plant growth, development and photosynthetic performance. This study investigates the impact of varying concentrations (0-300 µM) of sodium nitroprusside (SNP, a donor of NO) on the functions of the photosynthetic apparatus in sorghum (Sorghum bicolor L. Albanus) and maize (Zea mays L. Kerala) under physiological conditions. Analysis of the chlorophyll fluorescence signals (using PAM and the JIP-test) revealed an increased amount of open PSII reaction centers (qP increased), but it did not affect the number of active reaction centers per PSII antenna chlorophyll (RC/ABS). In addition, the smaller SNP concentrations (up to 150 µM) alleviated the interaction of QA with plastoquine in maize, while at 300 µM it predominates the electron recombination on QAQB-, with the oxidized S2 (or S3) states of oxygen evolving in complex ways in both studied plant species. At the same time, SNP application stimulated the electron flux-reducing end electron acceptors at the PSI acceptor side per reaction center (REo/RC increased up to 26%) and the probability of their reduction (φRo increased up to 20%). An increase in MDA (by about 30%) and H2O2 contents was registered only at the highest SNP concentration (300 µM). At this concentration, SNP differentially affected the amount of P700+ in studied plant species, i.e., it increased (by 10%) in maize but decreased (by 16%) in sorghum. The effects of SNP on the functions of the photosynthetic apparatus were accompanied by an increase in carotenoid content in both studied plants. Additionally, data revealed that SNP-induced changes in the photosynthetic apparatus differed between maize and sorghum, suggesting species specificity for SNP's impact on plants.

7.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232535

ABSTRACT

Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.


Subject(s)
Photosystem II Protein Complex , Salvia , Chlorophyll , Humans , Micronutrients , Oxygen , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Salvia/metabolism , Zinc
8.
Plants (Basel) ; 11(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145808

ABSTRACT

Clary sage (Salvia sclarea L.) is a medicinal plant that has the potential to be used for phytoextraction of zinc (Zn) and cadmium (Cd) from contaminated soils by accumulating these metals in its tissues. Additionally, it has been found to be more tolerant to excess Zn than to Cd stress alone; however, the interactive effects of the combined treatment with Zn and Cd on this medicinal herb, and the protective strategies of Zn to alleviate Cd toxicity have not yet been established in detail. In this study, clary sage plants grown hydroponically were simultaneously exposed to Zn (900 µM) and Cd (100 µM) for 8 days to obtain more detailed information about the plant responses and the role of excess Zn in mitigating Cd toxicity symptoms. The leaf anatomy, photosynthetic pigments, total phenolic and anthocyanin contents, antioxidant capacity (by DPPH and FRAP analyses), and the uptake and distribution of essential elements were investigated. The results showed that co-exposure to Zn and Cd leads to an increased leaf content of Fe and Mg compared to the control, and to increased leaf Ca, Mn, and Cu contents compared to plants treated with Cd only. This is most likely involved in the defense mechanisms of excess Zn against Cd toxicity to protect the chlorophyll content and the functions of both photosystems and the oxygen-evolving complex. The data also revealed that the leaves of clary sage plants subjected to the combined treatment have an increased antioxidant capacity attributed to the higher content of polyphenolic compounds. Furthermore, light microscopy indicated more alterations in the leaf morphology after Cd-only treatment than after the combined treatment. The present study shows that excess Zn could mitigate Cd toxicity in clary sage plants.

9.
Toxics ; 10(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35051078

ABSTRACT

Salvia sclarea L. is a Cd2+ tolerant medicinal herb with antifungal and antimicrobial properties cultivated for its pharmacological properties. However, accumulation of high Cd2+ content in its tissues increases the adverse health effects of Cd2+ in humans. Therefore, there is a serious demand to lower human Cd2+ intake. The purpose of our study was to evaluate the mitigative role of excess Zn2+ supply to Cd2+ uptake/translocation and toxicity in clary sage. Salvia plants were treated with excess Cd2+ (100 µM CdSO4) alone, and in combination with Zn2+ (900 µM ZnSO4), in modified Hoagland nutrient solution. The results demonstrate that S. sclarea plants exposed to Cd2+ toxicity accumulated a significant amount of Cd2+ in their tissues, with higher concentrations in roots than in leaves. Cadmium exposure enhanced total Zn2+ uptake but also decreased its translocation to leaves. The accumulated Cd2+ led to a substantial decrease in photosystem II (PSII) photochemistry and disrupted the chloroplast ultrastructure, which coincided with an increased lipid peroxidation. Zinc application decreased Cd2+ uptake and translocation to leaves, while it mitigated oxidative stress, restoring chloroplast ultrastructure. Excess Zn2+ ameliorated the adverse effects of Cd2+ on PSII photochemistry, increasing the fraction of energy used for photochemistry (ΦPSII) and restoring PSII redox state and maximum PSII efficiency (Fv/Fm), while decreasing excess excitation energy at PSII (EXC). We conclude that excess Zn2+ application eliminated the adverse effects of Cd2+ toxicity, reducing Cd2+ uptake and translocation and restoring chloroplast ultrastructure and PSII photochemical efficiency. Thus, excess Zn2+ application can be used as an important method for low Cd2+-accumulating crops, limiting Cd2+ entry into the food chain.

10.
Plants (Basel) ; 10(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34371672

ABSTRACT

The impacts of different NaCl concentrations (0-250 mM) on the photosynthesis of new hybrid lines of maize (Zea mays L. Kerala) and sorghum (Sorghum bicolor L. Shamal) were investigated. Salt-induced changes in the functions of photosynthetic apparatus were assessed using chlorophyll a fluorescence (PAM and OJIP test) and P700 photooxidation. Greater differences between the studied species in response to salinization were observed at 150 mM and 200 mM NaCl. The data revealed the stronger influence of maize in comparison to sorghum on the amount of closed PSII centers (1-qp) and their efficiency (Φexc), as well as on the effective quantum yield of the photochemical energy conversion of PSII (ΦPSII). Changes in the effective antenna size of PSII (ABS/RC), the electron flux per active reaction center (REo/RC) and the electron transport flux further QA (ETo/RC) were also registered. These changes in primary PSII photochemistry influenced the electron transport rate (ETR) and photosynthetic rate (parameter RFd), with the impacts being stronger in maize than sorghum. Moreover, the lowering of the electron transport rate from QA to the PSI end electron acceptors (REo/RC) and the probability of their reduction (φRo) altered the PSI photochemical activity, which influenced photooxidation of P700 and its decay kinetics. The pigment content and stress markers of oxidative damage were also determined. The data revealed a better salt tolerance of sorghum than maize, associated with the structural alterations in the photosynthetic membranes and the stimulation of the cyclic electron flow around PSI at higher NaCl concentrations. The relationships between the decreased pigment content, increased levels of stress markers and different inhibition levels of the function of both photosystems are discussed.

11.
Plant Physiol Biochem ; 167: 607-618, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34464827

ABSTRACT

This study investigates the impacts of zinc oxide nanoparticles: bare (ZnO NPs) and ZnO NPs coated with silicon shell (ZnO-Si NPs), on Pisum sativum L. under physiological and salt stress conditions. The experimental results revealed that the foliar spray with ZnO-Si NPs and 200 mg/L ZnO NPs did not influence the stomata structure, the membrane integrity, and the functions of both photosystems under physiological conditions, while 400 mg/L ZnO-Si NPs had beneficial effects on the effective quantum yield of photosystem II (PSII) and the photochemistry of photosystem I (PSI). On the contrary, small phytotoxic effects were registered after spraying with 400 mg/L ZnO NPs accompanied by stimulation of the cyclic electron flow around PSI and an increase of the non-photochemical quenching (NPQ). The results also showed that both types of NPs (with exception of 400 mg/L ZnO NPs) decrease the negative effects of 100 mM NaCl on the photochemistry of PSI (P700 photooxidation) and PSII (qp, Fv/Fm, Fv/Fo, ΦPSII, Φexc), as well as on the pigment content, stomata closure and membrane integrity. The protective effect was stronger after spraying with ZnO-Si NPs in comparison to ZnO NPs, which could be due to the presence of Si coating shell. The role of Si shell is discussed.


Subject(s)
Nanoparticles , Zinc Oxide , Chlorophyll , Nanoparticles/toxicity , Pisum sativum/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Salt Stress , Zinc Oxide/pharmacology
12.
Plants (Basel) ; 10(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807753

ABSTRACT

Strategies and coping mechanisms for stress tolerance under sub-optimal nutrition conditions could provide important guidelines for developing selection criteria in sustainable agriculture. Nitrogen (N) is one of the major nutrients limiting the growth and yield of crop plants, among which wheat is probably the most substantial to human diet worldwide. Physiological status and photosynthetic capacity of two contrasting wheat genotypes (old Slomer and modern semi-dwarf Enola) were evaluated at the seedling stage to assess how N supply affected osmotic stress tolerance and capacity of plants to survive drought periods. It was evident that higher N input in both varieties contributed to better performance under dehydration. The combination of lower N supply and water deprivation (osmotic stress induced by polyethylene glycol treatment) led to greater damage of the photosynthetic efficiency and a higher degree of oxidative stress than the individually applied stresses. The old wheat variety had better N assimilation efficiency, and it was also the one with better performance under N deficiency. However, when both N and water were deficient, the modern variety demonstrated better photosynthetic performance. It was concluded that different strategies for overcoming osmotic stress alone or in combination with low N could be attributed to differences in the genetic background. Better performance of the modern variety conceivably indicated that semi-dwarfing (Rht) alleles might have a beneficial effect in arid regions and N deficiency conditions.

13.
Plants (Basel) ; 10(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494177

ABSTRACT

In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess) Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for the phytoextraction and/or phytostabilization of Zn-contaminated soils.

14.
Ecotoxicol Environ Saf ; 209: 111851, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33421673

ABSTRACT

The herbal plant Salvia sclarea L. (clary sage) is classified to cadmium (Cd) accumulators and considered as a potential plant for phytoremediation of heavy metal polluted soil. However, the effect of Cd only treatment on the function of the photosynthetic apparatus of S. sclarea, as well as the mechanisms involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of S. sclarea plants exposed to a high Cd supply (100 µM) for 3 and 8 days by investigating element nutrient uptake, oxidative stress markers, pigment composition, photosynthetic performance and leaf structure. Measurements of the functional activities of photosystem I (PSI, by P700 photooxidation), photosystem II (PSII, by chlorophyll fluorescence parameters), the oxygen-evolving complex (oxygen evolution by Joliot- and Clark-type electrodes), as well as the leaf pigment and phenolic contents, were used to evaluate the protective mechanisms of the photosynthetic apparatus under Cd stress. Data suggested that the molecular mechanisms included in the photosynthetic tolerance to Cd toxicity involve strongly increased phenolic and anthocyanin contents, as well as an increased non-photochemical quenching and accelerated cyclic electron transport around PSI up to 61%, which protect the function of the photosynthetic apparatus under stress. Furthermore, the tolerance of S. sclarea to Cd stress is also associated with increased accumulation of Fe in leaves by 25%. All the above, clearly suggest that S. sclarea plants employ several different mechanisms to protect the function of the photosynthetic apparatus against Cd stress, which are discussed here.


Subject(s)
Cadmium/toxicity , Salvia/physiology , Soil Pollutants/toxicity , Biodegradation, Environmental , Chlorophyll/metabolism , Electron Transport , Oxidative Stress/physiology , Photosynthesis/drug effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Salvia/metabolism , Soil
15.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375193

ABSTRACT

Five-day exposure of clary sage (Salvia sclarea L.) to 100 µM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.


Subject(s)
Cadmium/toxicity , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Salvia/drug effects , Chlorophyll/metabolism , Chlorophyll A/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Hormesis , Hydroponics/methods , Microscopy, Electron, Transmission , Photochemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Salvia/metabolism
16.
Plant Physiol Biochem ; 155: 789-799, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32877878

ABSTRACT

Heavy metal pollution as well as improper fertilization management represent serious threats to a clean environment and healthy food. This study was conducted to investigate how nitrogen supply influences a plant's ability to cope with cadmium stress in the two wheat cultivars - the modern cv. Katya (carrier of the semi-dwarfing gene Rht8) and the old cv. Slomer. Here we examined the effects of 100 µM CdCl2 on both wheat genotypes grown hydroponically under three different nutrition regimes of 5.5, 10 and 20 mM NO3- by investigating plant growth, pigment content and the functional activity of the photosynthetic apparatus through a combination of PAM chlorophyll fluorescence, P700 photooxidation, oxygen evolution and oxidative stress markers. Data showed that the different genetic background affects the different strategies for metal uptake and allocation, as well as abilities to deal with oxidative stress. The modern cv. Katya restricts the entry of the metal to the roots, but allows its translocation to the shoots. Nevertheless, the photosynthetic performance indicated better protection, possibly mediated by the Rht8 allele. In contrast, the old cv. Slomer tolerates higher cadmium levels in roots and possesses efficient barriers against its transfer to the shoots, but still showed more impaired photosynthetic activity. In general, the impact of cadmium on the photosynthetic apparatus was most deleterious under the lowest nitrogen concentration which was applied, while the highest nitrogen supply alleviated the negative effects of cadmium. The data suggest that the modern breeding allele (Rht8), as well as a better nutrition might contribute to the tolerance to heavy metal stress in the wheat.


Subject(s)
Cadmium/pharmacology , Nitrogen/metabolism , Triticum/drug effects , Cadmium/adverse effects , Photosynthesis , Plant Roots , Triticum/physiology
17.
Materials (Basel) ; 12(18)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547238

ABSTRACT

In this study, for a first time (according to our knowledge), we couple the methodologies of chlorophyll fluorescence imaging analysis (CF-IA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to investigate the effects of cadmium (Cd) accumulation on photosystem II (PSII) photochemistry. We used as plant material Salvia sclarea that grew hydroponically with or without (control) 100 µM Cd for five days. The spatial heterogeneity of a decreased effective quantum yield of electron transport (ΦPSΙΙ) that was observed after exposure to Cd was linked to the spatial pattern of high Cd accumulation. However, the high increase of non-photochemical quenching (NPQ), at the leaf part with the high Cd accumulation, resulted in the decrease of the quantum yield of non-regulated energy loss (ΦNO) even more than that of control leaves. Thus, S. sclarea leaves exposed to 100 µM Cd exhibited lower reactive oxygen species (ROS) production as singlet oxygen (1O2). In addition, the increased photoprotective heat dissipation (NPQ) in the whole leaf under Cd exposure was sufficient enough to retain the same fraction of open reaction centers (qp) with control leaves. Our results demonstrated that CF-IA and LA-ICP-MS could be successfully combined to monitor heavy metal effects and plant tolerance mechanisms.

18.
Z Naturforsch C J Biosci ; 72(7-8): 315-324, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28258977

ABSTRACT

The effects of short-term treatment with phenylurea (DCMU, isoproturon) and phenol-type (ioxynil) herbicides on the green alga Chlorella kessleri and the cyanobacterium Synechocystis salina with different organizations of photosystem II (PSII) were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution measured by polarographic oxygen electrodes (Clark-type and Joliot-type). The photosynthetic oxygen evolution showed stronger inhibition than the PSII photochemistry. The effects of the studied herbicides on both algal and cyanobacterial cells decreased in the following order: DCMU>isoproturon>ioxynil. Furthermore, we observed that the number of blocked PSII centers increased significantly after DCMU treatment (204-250 times) and slightly after ioxynil treatment (19-35 times) in comparison with the control cells. This study suggests that the herbicides affect not only the acceptor side but also the donor side of PSII by modifications of the Mn cluster of the oxygen-evolving complex. We propose that one of the reasons for the different PSII inhibitions caused by herbicides is their influence, in different extents, on the kinetic parameters of the oxygen-evolving reactions (the initial S0-S1 state distribution, the number of blocked centers SB, the turnover time of Si states, misses and double hits). The relationship between the herbicide-induced inhibition and the changes in the kinetic parameters is discussed.


Subject(s)
Chlorella/drug effects , Herbicides/pharmacology , Photosystem II Protein Complex/metabolism , Synechocystis/drug effects , Chlorella/metabolism , Chlorophyll/metabolism , Diuron/pharmacology , Dose-Response Relationship, Drug , Electron Transport/drug effects , Iodobenzenes/pharmacology , Nitriles/pharmacology , Oxygen/metabolism , Phenylurea Compounds/pharmacology , Photosynthesis/drug effects , Synechocystis/metabolism
19.
Plant Physiol Biochem ; 114: 10-18, 2017 May.
Article in English | MEDLINE | ID: mdl-28246038

ABSTRACT

Тhe sensitivity to cadmium (Cd) stress of two near-isogenic wheat lines with differences at the Rht-B1 locus, Rht-B1a (tall wild type, encoding DELLA proteins) and Rht-B1c (dwarf mutant, encoding modified DELLA proteins), was investigated. The effects of 100 µM CdCl2 on plant growth, pigment content and functional activity of the photosynthetic apparatus of wheat seedlings grown on a nutrient solution were evaluated through a combination of PAM chlorophyll fluorescence, oxygen evolution, oxidation-reduction kinetics of P700 and 77 K fluorescence. The results showed that the wheat mutant (Rht-B1c) was more tolerant to Cd stress compared to the wild type (Rht-B1a), as evidenced by the lower reductions in plant growth and pigment content, lower inhibition of photosystem I (PSI) and photosystem II (PSII) photochemistry and of the oxygen evolution measured with Clark-type and Joliot-type electrodes. Furthermore, the enhanced Cd tolerance was accompanied by increased Cd accumulation within mutant plant tissues. The molecular mechanisms through which the Rht-B1c mutation improves plant tolerance to Cd stress involve structural alterations in the mutant photosynthetic membranes leading to better protection of the Mn cluster of oxygen-evolving complex and increased capacity for PSI cyclic electron transport, protecting photochemical activity of the photosynthetic apparatus under stress. This study suggests a role for the Rht-B1c-encoded DELLA proteins in protective mechanisms and tolerance of the photosynthetic apparatus in wheat plants exposed to heavy metals stress.


Subject(s)
Cadmium/toxicity , Plant Proteins/genetics , Triticum/drug effects , Triticum/genetics , Cadmium/pharmacokinetics , Carotenoids/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Fluorescence , Mutation , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Temperature , Triticum/physiology
20.
J Plant Physiol ; 184: 98-105, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26282614

ABSTRACT

The effect of the exogenously added quercetin against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes suspended at different pH of the medium (6.5, 7.6 and 8.4) was investigated. The data revealed that the interaction of this flavonoid with the membranes depends on the pH and influences the initial S0-S1 state distribution of PSII in the dark, the energy transfer between pigment-protein complexes of the photosynthetic apparatus and the membrane fluidity. Quercetin also displays a different UV-protective effect depending on its location in the membranes, as the effect is more pronounced at pH 8.4 when it is located at the membrane surface. The results suggest that quercetin induces structural changes in thylakoid membranes, one of the possible reasons for its protection of the photosynthetic apparatus.


Subject(s)
Antioxidants/pharmacology , Photosynthesis/radiation effects , Pisum sativum/radiation effects , Quercetin/pharmacology , Ultraviolet Rays , Hydrogen-Ion Concentration , Pisum sativum/drug effects , Pisum sativum/metabolism , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...