Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 118: 173-5, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26432950

ABSTRACT

A 384-well-based antibacterial assay amenable for high-throughput screening and combination testing is described. The assay uses 100-500nL of test compounds and tolerates up to 2.5% dimethyl sulfoxide concentrations. It can be used for screening compound libraries and testing combinatory/synergistic/antagonistic effects of antibiotics, small molecules, and natural product extracts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Evaluation, Preclinical/methods , Drug Interactions , High-Throughput Screening Assays , Microbial Sensitivity Tests/methods
2.
J Biomol Screen ; 18(1): 75-84, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22983163

ABSTRACT

Human interleukin 17 (IL-17) is a proinflammatory cytokine derived mainly from activated T cells. Extensive evidence points to a significant role of IL-17 in many autoimmune and infectious diseases, as well as tumorigenesis and transplant rejection, and suggests that targeting IL-17 could be a promising therapeutic strategy. Robust cell-based assays would thus be essential for lead identification and the optimization of therapeutic candidates. Herein, we report a well-characterized two-step assay, consisting of (a) in vitro activation and stimulation of CD4(+) T lymphocytes by a defined complex of antibodies and cytokines, leading to T helper 17 (Th17) cell differentiation and IL-17 production, and (b) IL-17 quantification in cell supernatants using a homogeneous time-resolved fluorescence (HTRF) assay. The system was optimized for and shown to be reliable in high-throughput compatible 96- and 384-well plate formats. The assay is robust (Z' > 0.5) and simple to perform, yields a stable response, and allows for sufficient discrimination of positive (IL-17-producing cells) and negative controls (uninduced cells). The assay was validated by performing dose-response testing of rapamycin and cyclosporine A, which had previously been reported to inhibit IL-17, and determining, for the first time, their in vitro potencies (IC(50)s of 80 ± 23 pM and 223 ± 52 nM, respectively). Also, IKK 16, a selective small-molecule inhibitor of IκB kinase, was found to inhibit IL-17 production, with an IC(50) of 315 ± 79 nM.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , High-Throughput Screening Assays/methods , Interleukin-17/antagonists & inhibitors , Th17 Cells/drug effects , Adult , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cyclosporine/pharmacology , Dimethyl Sulfoxide/pharmacology , Humans , Interleukin-17/metabolism , Male , Middle Aged , Reference Standards , Reproducibility of Results , Sirolimus/pharmacology , Solvents/pharmacology , Spectrometry, Fluorescence , Th17 Cells/metabolism
3.
Bioorg Med Chem Lett ; 21(1): 58-61, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21146988

ABSTRACT

Serotonin type 3 (5-HT(3)) receptor partial agonists are being targeted as potential new drugs for the treatment of irritable bowel syndrome (IBS). Two new chemical series bearing indazole and indole cores have exhibited nanomolar binding affinity for the h5-HT(3)A receptor. A range of partial agonist activities in HEK cells heterologously expressing the h5-HT(3)A receptor were measured for the indazole series. Excellent 5-HT(3) receptor selectivity, favorable in vitro metabolic stability and CYP inhibition properties, and good oral in vivo potency in the murine von Bezold-Jarisch reflex model is exemplified thereby indicating the series to have potential utility as improved IBS agents.


Subject(s)
Irritable Bowel Syndrome/drug therapy , Receptors, Serotonin, 5-HT3/chemistry , Serotonin 5-HT3 Receptor Agonists/chemistry , Animals , Cell Line , Disease Models, Animal , Humans , Imidazoles/chemistry , Indoles/chemistry , Mice , Microsomes, Liver/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Serotonin 5-HT3 Receptor Agonists/chemical synthesis , Serotonin 5-HT3 Receptor Agonists/therapeutic use
4.
Bioorg Med Chem Lett ; 20(22): 6538-41, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20889341

ABSTRACT

A new class of 2-substituted benzoxazole carboxamides are presented as potent functional 5-HT(3) receptor antagonists. The chemical series possesses nanomolar in vitro activity against human 5-HT(3)A receptors. A chemistry optimization program was conducted and identified 2-aminobenzoxazoles as orally active 5-HT(3) receptor antagonists with good metabolic stability. These novel analogues possess drug-like characteristics and have potential utility for the treatment of diseases attributable to improper 5-HT(3) receptor function, especially diarrhea predominant irritable bowel syndrome (IBS-D).


Subject(s)
Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Drug Discovery , Receptors, Serotonin, 5-HT3/drug effects , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology
5.
Bioorg Med Chem Lett ; 20(10): 3017-20, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20427184

ABSTRACT

An indazole based series of glucocorticoid receptor agonists is reported. The SAR exploration of this scaffold yielded compounds with nanomolar affinity for the glucocorticoid receptor with indications of selectivity for the preferred transrepression mechanism; in vivo efficacy was observed in the mouse LPS induced TNFalpha model for compound 28.


Subject(s)
Anti-Inflammatory Agents/chemistry , Indazoles/chemistry , Receptors, Glucocorticoid/agonists , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Indazoles/chemical synthesis , Indazoles/pharmacology , Mice , Receptors, Glucocorticoid/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
J Protein Chem ; 21(8): 529-36, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12638655

ABSTRACT

Two small multimeric histidine-rich proteins, AgNt84 and Ag164, encoded by two nodule-specific cDNAs isolated from nodule cDNA libraries of the actinorhizal host plant Alnus glutinosa, represent a new class of plant metal binding proteins. This paper reports the characterization of the purified in vitro-expressed proteins by size exclusion chromatography, circular dichroism, equilibrium dialysis, metal affinity chromatography coupled with mass spectrometry, and nuclear magnetic resonance spectroscopy. These analyses reveal that each polypeptide is capable of binding multiple atoms of Zn2+, Ni2-, Co2+, Cu2+, Cd2+ and Hg2+. A reversible shift in histidine Cepsilon1 and Cdelta2 protons in NMR analysis occurred during titration of this protein with ZnCl2 strongly suggesting that histidine residues are responsible for metal binding. AgNt84 and Ag164 are not related to metal binding metallothioneins and phytochelatins and represent a new class of plant metal binding proteins that we propose to call metallohistins. Possible biological roles in symbioses for AgNt84 and Ag164, and their potential for use in bioremediation are discussed.


Subject(s)
Metals/chemistry , Metals/classification , Plants/metabolism , Proteins/chemistry , Amino Acid Sequence , Chlorides/pharmacology , Chromatography , Circular Dichroism , DNA, Complementary/metabolism , Escherichia coli/metabolism , Gene Deletion , Gene Library , Histidine/chemistry , In Situ Hybridization , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Sequence Data , Peptides/chemistry , Proteins/classification , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Zinc Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...