Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36769985

ABSTRACT

This paper deals with the study of high-strength M300 maraging steel produced using the selective laser melting method. Heat treatment consists of solution annealing and subsequent aging; the influence of the selected aging temperatures on the final mechanical properties-microhardness and compressive yield strength-and the structure of the maraging steel are described in detail. The microstructure of the samples is examined using optical and electron microscopy. The compressive test results show that the compressive yield strength increased after heat treatment up to a treatment temperature of 480 °C and then gradually decreased. The sample aged at 480 °C also exhibited the highest observed microhardness of 562 HV. The structure of this sample changed from the original melt pools to a relatively fine-grained structure with a high fraction of high-angle grain boundaries (72%).

2.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363155

ABSTRACT

The present article examines special steels used for the production of injection screws in the plastic industry, with a glass fiber content of up to 30%. Experimental materials, M390 and M398, are classified as tool steels, which are produced by powder metallurgy-HIP methods (hot isostatic pressing). The main goal of the presented paper is to propose the optimal tempered temperature of M398 steel and also to compare the tribological properties of both materials and to determine the degree of their wear depending on their final heat treatment. Partial results refer to the analysis of hardness, roughness, the overall wear mechanism, the change in the volume of retained austenite due to the tempering temperature, and the EDS analysis of the worn surfaces in individual contact pairs. A ceramic ball Al2O3 in the α phase was used as the contact material, which had a diameter of 6.35 mm. The ceramic ball performed a rotational movement on the experimental material surface at an elevated temperature of 200 °C using the dry ball-on-disk method. It was experimentally shown that the new M398 material can fully replace the M390 material because it exhibits significantly better tribological properties. The M398 material showed more than a 400% reduction in wear compared to the M390 material. The ideal heat treatment consisted of cryogenic quenching to -78 °C and a tempering temperature of 400 °C. At tempering temperatures of 200 and 400 °C, adhesive wear occurred, which was combined with abrasive wear at a tempered temperature of 600 °C. The averaged coefficient of friction (COF) results show that the M398 material presents less resistance in the friction process and its values are approximately 0.25, while the M390 material showed a COF value of 0.3 after the cryogenic hardening process. The friction surface roughness of the M398 materials also showed lower values compared to the M390 material by approximately 35%. Both of these results are related to the content of M7C3 and MC carbide particles based on Cr and V in the bulk of the material, which are in favor of the M398 material.

3.
Materials (Basel) ; 14(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443172

ABSTRACT

Cutting tools have long been coated with an AlCrN hard coating system that has good mechanical and tribological qualities. Boron (B) and vanadium (V) additions to AlCrN coatings were studied for their mechanical and tribological properties. Cathodic multi-arc evaporation was used to successfully manufacture the AlCrBN and AlCrVN coatings. These multicomponent coatings were applied to the untreated and plasma-nitrided surfaces of HS6-5-2 and H13 steels, respectively. Nanoindentation and Vickers micro-hardness tests were used to assess the mechanical properties of the materials. Ball-on-flat wear tests with WC-Co balls as counterparts were used to assess the friction-wear capabilities. Nanoindentation tests demonstrated that AlCrBN coating has a higher hardness (HIT 40.9 GPa) than AlCrVN coating (39.3 GPa). Steels' wear resistance was significantly increased by a hybrid treatment that included plasma nitriding and hard coatings. The wear volume was 3% better for the AlCrBN coating than for the AlCrVN coating on H13 nitrided steel, decreasing by 89% compared to the untreated material. For HS6-5-2 steel, the wear volume was almost the same for both coatings but decreased by 77% compared to the untreated material. Boron addition significantly improved the mechanical, tribological, and adhesive capabilities of the AlCrN coating.

SELECTION OF CITATIONS
SEARCH DETAIL
...