Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789792

ABSTRACT

BACKGROUND: The aim of our current systematic dynamic phantom study was first, to optimize reconstruction parameters of coronary CTA (CCTA) acquired on photon counting CT (PCCT) for coronary artery calcium (CAC) scoring, and second, to assess the feasibility of calculating CAC scores from CCTA, in comparison to reference calcium scoring CT (CSCT) scans. METHODS: In this phantom study, an artificial coronary artery was translated at velocities corresponding to 0, < 60, and 60-75 beats per minute (bpm) within an anthropomorphic phantom. The density of calcifications was 100 (very low), 200 (low), 400 (medium), and 800 (high) mgHA/cm3, respectively. CCTA was reconstructed with the following parameters: virtual non-iodine (VNI), with and without iterative reconstruction (QIR level 2, QIR off, respectively); kernels Qr36 and Qr44f; slice thickness/increment 3.0/1.5 mm and 0.4/0.2 mm. The agreement in risk group classification between CACCCTA and CACCSCT scoring was measured using Cohen weighted linear κ with 95% CI. RESULTS: For CCTA reconstructed with 0.4 mm slice thickness, calcium detectability was perfect (100%). At < 60 bpm, CACCCTA of low, and medium density calcification was underestimated by 53%, and 15%, respectively. However, CACCCTA was not significantly different from CACCSCT of very low, and high-density calcifications. The best risk agreement was achieved when CCTA was reconstructed with QIR off, Qr44f, and 0.4 mm slice thickness (κ = 0.762, 95% CI 0.671-0.853). CONCLUSION: In this dynamic phantom study, the detection of calcifications with different densities was excellent with CCTA on PCCT using thin-slice VNI reconstruction. Agatston scores were underestimated compared to CSCT but agreement in risk classification was substantial. CLINICAL RELEVANCE STATEMENT: Photon counting CT may enable the implementation of coronary artery calcium scoring from coronary CTA in daily clinical practice. KEY POINTS: Photon-counting CTA allows for excellent detectability of low-density calcifications at all heart rates. Coronary artery calcium scoring from coronary CTA acquired on photon counting CT is feasible, although improvement is needed. Adoption of the standard acquisition and reconstruction protocol for calcium scoring is needed for improved quantification of coronary artery calcium to fully employ the potential of photon counting CT.

2.
Eur Radiol ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175219

ABSTRACT

OBJECTIVES: Cardiac motion artifacts hinder the assessment of coronary arteries in coronary computed tomography angiography (CCTA). We investigated the impact of motion compensation reconstruction (MCR) on motion artifacts in CCTA at various heart rates (HR) using a dynamic phantom. MATERIALS AND METHODS: An artificial hollow coronary artery (5-mm diameter lumen) filled with iodinated contrast agent (400 HU at 120 kVp), positioned centrally in an anthropomorphic chest phantom, was scanned using a dual-layer spectral detector CT. The artery was translated at constant horizontal velocities (0-80 mm/s, increment of 10 mm/s). For each velocity, five CCTA scans were repeated using a clinical protocol. Motion artifacts were quantified using the in-plane motion area. Regression analysis was performed to calculate the reduction in motion artifacts provided by MCR, by division of the slopes of non-MCR and MCR fitted lines. RESULTS: Reference mean (95% confidence interval) motion artifact area was 24.9 mm2 (23.8, 26.0). Without MCR, motion artifact areas for velocities exceeding 20 mm/s were significantly larger (up to 57.2 mm2 (40.1, 74.2)) than the reference. With MCR, no significant differences compared to the reference were shown for all velocities, except for 70 mm/s (29.0 mm2 (27.0, 31.0)). The slopes of the fitted data were 0.44 and 0.04 for standard and MCR reconstructions, respectively, resulting in an 11-time motion artifact reduction. CONCLUSION: MCR may improve CCTA assessment in patients by reducing coronary artery motion artifacts, especially in those with elevated HR who cannot receive beta blockers or do not attain the targeted HR. CLINICAL RELEVANCE STATEMENT: This vendor-specific motion compensation reconstruction may improve coronary computed tomography angiography assessment in patients by reduction of coronary artery motion artifacts, especially in those with elevated various heart rates (HR) who cannot receive beta blockers or do not attain the targeted HR. KEY POINTS: • Motion artifacts are known to hinder the assessment of coronary arteries on coronary CT angiography (CCTA), leading to more non-diagnostic scans. • This dynamic phantom study shows that motion compensation reconstruction (MCR) reduces motion artifacts at various velocities, which may help to decrease the number of non-diagnostic scans. • MCR in this study showed to reduce motion artifacts 11-fold.

3.
JACC Cardiovasc Imaging ; 16(12): 1552-1564, 2023 12.
Article in English | MEDLINE | ID: mdl-37318394

ABSTRACT

BACKGROUND: Substantial variation in Agatston scores (AS) acquired with different computed tomography (CT) scanners may influence patient risk classification. OBJECTIVES: This study sought to develop a calibration tool for state-of-the-art CT systems resulting in vendor-neutral AS (vnAS), and to assess the impact of vnAS on coronary heart disease (CHD) event prediction. METHODS: The vnAS calibration tool was derived by imaging 2 anthropomorphic calcium containing phantoms on 7 different CT and 1 electron beam tomography system, which was used as the reference system. The effect of vnAS on CHD event prediction was analyzed with data from 3,181 participants from MESA (Multi-Ethnic Study on Atherosclerosis). Chi-square analysis was used to compare CHD event rates between low (vnAS <100) and high calcium groups (vnAS ≥100). Multivariable Cox proportional hazard regression models were used to assess the incremental value of vnAS. RESULTS: For all CT systems, a strong correlation with electron beam tomography-AS was found (R2 >0.932). Of the MESA participants originally in the low calcium group (n = 781), 85 (11%) participants were reclassified to a higher risk category based on the recalculated vnAS. For reclassified participants, the CHD event rate of 15% was significantly higher compared with participants in the low calcium group (7%; P = 0.008) with a CHD HR of 3.39 (95% CI: 1.82-6.35; P = 0.001). CONCLUSIONS: The authors developed a calibration tool that enables calculation of a vnAS. MESA participants who were reclassified to a higher calcium category by means of the vnAS experienced more CHD events, indicating improved risk categorization.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Vascular Calcification , Humans , Coronary Artery Disease/diagnostic imaging , Calcium , Predictive Value of Tests , Tomography, X-Ray Computed , Risk Factors , Risk Assessment , Coronary Vessels/diagnostic imaging , Vascular Calcification/diagnostic imaging
4.
Eur Radiol ; 33(7): 4668-4675, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36729174

ABSTRACT

PURPOSE: To systematically assess the radiation dose reduction potential of coronary artery calcium (CAC) assessments with photon-counting computed tomography (PCCT) by changing the tube potential for different patient sizes with a dynamic phantom. METHODS: A hollow artery, containing three calcifications of different densities, was translated at velocities corresponding to 0, < 60, 60-75, and > 75 beats per minute within an anthropomorphic phantom. Extension rings were used to simulate average- and large -sized patients. PCCT scans were made with the reference clinical protocol (tube potential of 120 kilovolt (kV)), and with 70, 90, Sn100, Sn140, and 140 kV at identical image quality levels. All acquisitions were reconstructed at a virtual monoenergetic energy level of 70 keV. For each calcification, Agatston scores and contrast-to-noise ratios (CNR) were determined, and compared to the reference with Wilcoxon signed-rank tests, with p < 0.05 indicating significant differences. RESULTS: A decrease in radiation dose (22%) was achieved at Sn100 kV for the average-sized phantom. For the large phantom, Sn100 and Sn140 kV resulted in a decrease in radiation doses of 19% and 3%, respectively. Irrespective of CAC density, Sn100 and 140 kVp did not result in significantly different CNR. Only at Sn100 kV were there no significant differences in Agatston scores for all CAC densities, heart rates, and phantom sizes. CONCLUSION: PCCT at tube voltage of 100 kV with added tin filtration and reconstructed at 70 keV enables a ≥ 19% dose reduction compared to 120 kV, independent of phantom size, CAC density, and heart rate. KEY POINTS: • Photon-counting CT allows for reduced radiation dose acquisitions (up to 19%) for coronary calcium assessment by reducing tube voltage while reconstructing at a normal monoE level of 70 keV. • Tube voltage reduction is possible for medium and large patient sizes, without affecting the Agatston score outcome.


Subject(s)
Calcinosis , Calcium , Humans , Coronary Vessels/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed/methods , Phantoms, Imaging
5.
J Nucl Cardiol ; 30(1): 239-250, 2023 02.
Article in English | MEDLINE | ID: mdl-35708853

ABSTRACT

BACKGROUND: Coronary artery calcium is a well-known predictor of major adverse cardiac events and is usually scored manually from dedicated, ECG-triggered calcium scoring CT (CSCT) scans. In clinical practice, a myocardial perfusion PET scan is accompanied by a non-ECG triggered low dose CT (LDCT) scan. In this study, we investigated the accuracy of patients' cardiovascular risk categorisation based on manual, visual, and automatic AI calcium scoring using the LDCT scan. METHODS: We retrospectively enrolled 213 patients. Each patient received a 13N-ammonia PET scan, an LDCT scan, and a CSCT scan as the gold standard. All LDCT and CSCT scans were scored manually, visually, and automatically. For the manual scoring, we used vendor recommended software (Syngo.via, Siemens). For visual scoring a 6-points risk scale was used (0; 1-10; 11-100; 101-400; 401-100; > 1 000 Agatston score). The automatic scoring was performed with deep learning software (Syngo.via, Siemens). All manual and automatic Agatston scores were converted to the 6-point risk scale. Manual CSCT scoring was used as a reference. RESULTS: The agreement of manual and automatic LDCT scoring with the reference was low [weighted kappa 0.59 (95% CI 0.53-0.65); 0.50 (95% CI 0.44-0.56), respectively], but the agreement of visual LDCT scoring was strong [0.82 (95% CI 0.77-0.86)]. CONCLUSIONS: Compared with the gold standard manual CSCT scoring, visual LDCT scoring outperformed manual LDCT and automatic LDCT scoring.


Subject(s)
Calcium , Coronary Artery Disease , Humans , Ammonia , Retrospective Studies , Tomography, X-Ray Computed , Coronary Vessels , Positron-Emission Tomography
6.
Diagnostics (Basel) ; 11(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201889

ABSTRACT

Quantitative flow ratio (QFR) is a new opportunity to analyze functional stenosis during invasive coronary angiography. Together with a well-known intravascular ultrasound (IVUS) and a new player in the field, near-infrared spectroscopy (NIRS), it is gaining a lot of interest. The aim of the study was to compare QFR results with integrated IVUS-NIRS results acquired simultaneously in the same coronary lesion. We retrospectively enrolled 66 patients in whom 66 coronary lesions were assessed by NIRS-IVUS and QFR. Lesions were divided into two groups based on QFR results as QFR-positive group (QFR ≤ 0.8) or QFR-negative group (QFR > 0.8). Based on ROC curve analysis, the best cut-off values of minimal lumen area (MLA), minimal lumen diameter (MLD) and percent diameter stenosis for predicting QFR ≤ 80 were 2.4 (AUC 0.733, 95%CI 0.61, 0.834), 1.6 (AUC 0.768, 95%CI 0.634, 0.872) and 59.5 (AUC 0.918, 95%CI 0.824, 0.971), respectively. In QFR-positive lesions, the maxLCBI4mm was significantly higher than in QFR-negative lesions (450.12 ± 251.0 vs. 329.47 ± 191.14, p = 0.046). The major finding of the present study is that values of IVUS-MLA, IVUS-MLD and percent diameter stenosis show a good efficiency in predicting QFR ≤ 0.80. Moreover, QFR-positive lesions are characterized by higher maxLCBI4mm as compared to the QFR-negative group.

7.
Cardiol J ; 28(6): 887-895, 2021.
Article in English | MEDLINE | ID: mdl-31909469

ABSTRACT

BACKGROUND: Previous studies suggest that higher plasma concentrations of several lipid molecules are associated with higher lipid core burden index (LCBI) near infrared spectroscopy (NIRS) imaging. The aim of this study was to investigate whether an association between plasma lipids depends on plaque morphology (thin cap fibrous atheroma [TCFA] vs. non-TFCA) as measured by near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS). METHODS: Sixty-four patients retrospectively enrolled were diagnosed with stable coronary artery disease or acute coronary syndrome who underwent NIRS-IVUS imaging. Before percutaneous coronary intervention, blood samples were collected for measurement of serum levels of total cholesterol (TC), lowdensity lipoprotein cholesterol (HDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG). Patients were divided into two groups based on maxLCBI4mm and IVUS imaging. Those with maxLCBI4mm ≥ 323 were included into TCFA group (n = 35) while others were assigned to the non-TCFA group (n = 29). RESULTS: Thin cap fibrous atheroma lesions were significantly longer than the non-TCFA lesions (25.66 ± 9.56 vs. 17.03 ± 9.22, p = 0.001). TCFA characterizes greater plaque burden (78.4 [70.9, 82.2] vs. 72.70 [64.77, 76,05]; p = 0.021) and plaque volume (176.1 [110.75, 247.5] vs. 68.1 [55.58, 143.35]; p = 0.000) as compared to non-TCFA. In TCFA suspected lesions, there was no correlation between max-LCBI4mm and LDL levels (r = 0.105, p = 0.549) nor TC levels (r = -0.035, p = 0.844) but a negative correlation was found between HDL-C and maxLCBI4mm (r = -0.453, p = 0.007). CONCLUSIONS: The present study showed that there was no correlation between plasma LDL-C, TC and TG level and the amount of lipids in coronary plaque assessed by NIRS in both TCFA and non-TCFA groups. Only HDL-C correlated with maxLCBI4mm in TCFA lesions.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Cholesterol, HDL , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Fibrosis , Humans , Plaque, Atherosclerotic/diagnosis , Predictive Value of Tests , Retrospective Studies , Spectroscopy, Near-Infrared/methods , Ultrasonography, Interventional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...