Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290059

ABSTRACT

Plant-microbe interactions, including those of arbuscular mycorrhiza (AM), have been investigated for a wide spectrum of model plants. The present study focuses on an analysis of gene expression that encodes phosphate and sugar transporters and carbohydrate metabolic enzymes in a new model plant, the highly mycotrophic Medicago lupulina MLS-1 line under conditions of phosphorus deficiency and inoculation with Rhizophagus irregularis. Expression profiles were detected by RT-PCR at six plant stages of development (second leaf, third leaf, shooting, axillary shoot branching initiation, axillary shoot branching, flowering initiation). In comparison to control (without AM), the variant with AM inoculation exhibited a significant elevation of transcription levels of carbohydrate metabolic enzymes (MlSUS, MlHXK1) and sucrose transporters (MlSUC4) in M. lupulina leaves at the shooting stage. We suggest that this leads to a significant increase in the frequency of AM infection, an abundance of mycelium in roots and an increase in AM efficiency (which is calculated by the fresh weight of aerial parts and roots at the axillary shoot branching initiation stage). In roots, the specificity of MlPT4 and MlATP1 gene expressions were revealed for effective AM symbiosis. The level of MlPT4 transcripts in AM roots increased more than tenfold in comparison to that of non-specific MlPT1 and MlPT2. For the first time, MlPT1 expression was shown to increase sharply against MlPT2 in M. lupulina roots without AM at the shooting initiation stage. A significant increase in MlRUB expression was revealed at late stages in the host plant's development, during axillary shoot branching and flowering initiation. The opposite changes characterized MlHXK1 expression. Alteration in MlHXK1 gene transcription was the same, but was more pronounced in roots. The obtained results indicate the importance of genes that encode phosphate transporters and the enzymes of carbohydrate metabolism for effective AM development at the shooting stage in the host plant.

2.
Funct Plant Biol ; 45(2): 247-258, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291039

ABSTRACT

In plant cells, peroxisomes participate in the metabolism of reactive oxygen species (ROS). One of the major regulators of cellular ROS levels - catalase (CAT) - occurs exclusively in peroxisomes. CAT activity is required for immunity-triggered autophagic programmed cell death (PCD). Autophagy has been recently demonstrated to represent a route for degradation of peroxisomes in plant cells. In the present study, the dynamics of the cellular peroxisome pool in tobacco BY-2 cell suspension cultures were used to analyse the effects of inhibition of basal autophagy with special attention to CAT activity. Numbers of peroxisomes per cell, levels of CAT protein and activity, cell viability, ROS levels and expression levels of genes encoding components of antioxidant system were analysed upon application of 3-methyladenine (3-MA), an inhibitor of autophagy, and/or aminotriazole (AT), an inhibitor of CAT. When applied separately, 3-MA and AT led to an increase in cell death, but this effect was attenuated by their simultaneous application. The obtained data suggest that both the levels of CAT protein in peroxisomes as well as CAT activity modulate the onset of cell death in tobacco BY-2 cells via ROS levels and autophagy.

SELECTION OF CITATIONS
SEARCH DETAIL
...