Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Med ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38929963

ABSTRACT

Floating-Harbor syndrome (FHS) is an extremely rare genetic disorder connected with a distinctive facial appearance, various skeletal malformations, delayed bone age, and expressive language delays. It is caused by heterozygous mutations in the Snf2-related CREBBP activator protein (SRCAP) gene. The aim of this paper is to describe the case of a 14-year-old male with FHS, referring to a review of the literature, and to collect all reported symptoms. In addition, the orthodontic treatment of the patient is described. For this, the electronic databases PubMed and Scopus were searched using the keyword "Floating-Harbor syndrome". Similar to previous cases in the literature, the patient presented with short stature; a triangular face with a large bulbous nose; deep-set eyes and narrow eyelid gaps; a wide mouth with a thin vermilion border of the upper lip; and dorsally rotated, small ears. They also presented some less-described symptoms, such as macrodontia and micrognathia. Moreover, mild mental retardation, microcephaly, and delayed psychomotor development were found. On the basis of an extraoral, intraoral examination, X-rays, and CBCT, he was diagnosed with overbite, canine class I and angle class III, on both sides. To the best of our knowledge, orthodontic treatment of this disease has not been assessed in detail so far, so this is the first case.

2.
Gels ; 10(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391429

ABSTRACT

The aim of the presented systematic review is to update the state of knowledge and relate the properties and composition of fluoride gels to their potential application. This article aims to explore the effect of fluoride gel application on changes in the properties of dental biomaterials and tooth tissues. The review includes articles assessing studies on the effects of fluoride gel on dental tissues and materials. Employing the PRISMA protocol, a meticulous search was conducted across the PubMed, Scopus, and Web of Science databases, utilizing keywords such as fluoride, gel, and properties. The publications were selected without limitation by the year of publication, and then Cohen's κ test was used to assess the agreement of the respondents. Exclusion criteria included non-English studies, opinion pieces, editorial papers, letters to the editor, review articles and meta-analyses, clinical reports, studies lacking full-text accessibility, and duplicates. The quality of the chosen papers was assessed by two independent reviewers. A total of 2385 were located in databases, of which only 17 met the inclusion criteria. All publications showed increased surface mineralization, and seven studies showed the effect of fluoride gel on the surface of dental tissues. Three articles stated a negative effect of fluoride gels on titanium and stainless steel alloys and glass ionomer fillings. The effects on shear bond strength and plaque deposition require further investigation because the study results are contradictory.

3.
J Funct Biomater ; 15(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38391898

ABSTRACT

This study aims to evaluate the influence of a nanohydroxyapatite layer applied to the surface of titanium or titanium alloy implants on the intricate process of osseointegration and its effect on osteoblast cell lines, compared to uncoated implants. Additionally, the investigation scrutinizes various modifications of the coating and their consequential effects on bone and cell line biocompatibility. On the specific date of November 2023, an exhaustive electronic search was conducted in esteemed databases such as PubMed, Web of Science, and Scopus, utilizing the meticulously chosen keywords ((titanium) AND ((osteoblasts) and hydroxyapatite)). Methodologically, the systematic review meticulously adhered to the PRISMA protocol. Initially, a total of 1739 studies underwent scrutiny, with the elimination of 741 duplicate records. A further 972 articles were excluded on account of their incongruence with the predefined subjects. The ultimate compilation embraced 26 studies, with a predominant focus on the effects of nanohydroxyapatite coating in isolation. However, a subset of nine papers delved into the nuanced realm of its modifiers, encompassing materials such as chitosan, collagen, silver particles, or gelatine. Across many of the selected studies, the application of nanohydroxyapatite coating exhibited a proclivity to enhance the osseointegration process. The modifications thereof showcased a positive influence on cell lines, manifesting in increased cellular spread or the attenuation of bacterial activity. In clinical applications, this augmentation potentially translates into heightened implant stability, thereby amplifying the overall procedural success rate. This, in turn, renders nanohydroxyapatite-coated implants a viable and potentially advantageous option in clinical scenarios where non-modified implants may not suffice.

4.
Materials (Basel) ; 16(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36770248

ABSTRACT

Fluoride is one of the elements commonly present in the human environment. Due to its characteristics, it is very widely used in medicine, dentistry, industry or agriculture. On the other hand, its universality possesses a real threat to the human body in the form of acute and chronic poisoning. The aim of this paper is to characterize the properties of fluoride and its effects on the human body, as well as the sources of its occurrence. Particular emphasis is placed on the safety of its use and optimal dosage intake, which prevents accumulation and reduces its potential side effects. The positive effect of proper fluoride supply is widely described. In order to avoid overdose, it is best to consult a specialist to properly select the dosage.

5.
Materials (Basel) ; 14(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576522

ABSTRACT

In recent years, nanomaterials have become increasingly present in medicine, especially in dentistry. Their characteristics are proving to be very useful in clinical cases. Due to the intense research in the field of biomaterials and nanotechnology, the efficacy and possibilities of dental procedures have immensely expanded over the years. The nano size of materials allows them to exhibit properties not present in their larger-in-scale counterparts. The medical procedures in endodontics are time-consuming and mostly require several visits to be able to achieve the proper result. In this field of dentistry, there are still major issues about the removal of the mostly bacterial infection from the dental root canals. It has been confirmed that nanoparticles are much more efficient than traditional materials and appear to have superior properties when it comes to surface chemistry and bonding. Their unique antibacterial properties are also promising features in every medical procedure, especially in endodontics. High versatility of use of nanomaterials makes them a powerful tool in dental clinics, in a plethora of endodontic procedures, including pulp regeneration, drug delivery, root repair, disinfection, obturation and canal filling. This study focuses on summing up the current knowledge about the utility of nanomaterials in endodontics, their characteristics, advantages, disadvantages, and provides a number of reasons why research in this field should be continued.

6.
Nanomaterials (Basel) ; 11(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525572

ABSTRACT

Nanotechnology has gained importance in recent years due to its ability to enhance material properties, including antimicrobial characteristics. Nanotechnology is applicable in various aspects of orthodontics. This scientific work focuses on the concept of nanotechnology and its applications in the field of orthodontics, including, among others, enhancement of antimicrobial characteristics of orthodontic resins, leading to reduction of enamel demineralization or control of friction force during orthodontic movement. The latter one enables effective orthodontic treatment while using less force. Emphasis is put on antimicrobial and mechanical characteristics of nanomaterials during orthodontic treatment. The manuscript sums up the current knowledge about nanomaterials' influence on orthodontic appliances.

7.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498453

ABSTRACT

This review is an attempt to summarize current research on ozone, titanium dioxide (TiO2), silver (Ag), copper oxide CuO and platinum (Pt) nanoparticles (NPs). These agents can be used in various fields of dentistry such as conservative dentistry, endodontic, prosthetic or dental surgery. Nanotechnology and ozone can facilitate the dentist's work by providing antimicrobial properties to dental materials or ensuring a decontaminated work area. However, the high potential of these agents for use in medicine should be confirmed in further research due to possible side effects, especially in long duration of observation so that the best way to apply them can be obtained.

8.
Nanomaterials (Basel) ; 10(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050423

ABSTRACT

The research has been carried out with a focus on the assessment of the antimicrobial efficacy of pure nanohydroxyapatite, Cu2+-doped nanohydroxyapatite, ozonated olive oil-loaded nanohydroxyapatite, and Cu2+-doped nanohydroxyapatite, respectively. Their potential antimicrobial activity was investigated against Streptococcus mutans, Lactobacillus rhamnosus, and Candida albicans. Among all tested materials, the highest efficacy was observed in terms of ozonated olive oil. The studies were performed using an Ultraviolet-Visible spectrophotometry (UV-Vis), electron microscopy, and statistical methods, by determining the value of Colony-Forming Units (CFU/mL) and Minimal Inhibitory Concentration (MIC).

SELECTION OF CITATIONS
SEARCH DETAIL