Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 4504, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161304

ABSTRACT

Changes in terrestrial water storage as observed by the satellite gravity mission GRACE (Gravity Recovery and Climate Experiment) represent a new and completely independent way to constrain the net flux imbalance in atmospheric reanalyses. In this study daily GRACE gravity field changes are used for the first time to investigate high-frequency hydro-meteorological fluxes over the continents. Band-pass filtered water fluxes are derived from GRACE water storage time series by first applying a numerical differentiation filter and subsequent high-pass filtering to isolate fluxes at periods between 5 and 30 days corresponding to typical time-scales of weather system persistence at moderate latitudes. By comparison with the latest atmospheric reanalysis ERA5 of the European Centre for Medium-Range Weather Forecasts (ECWMF) we show that daily GRACE gravity field models contain realistic high-frequency water flux information. Furthermore, GRACE-derived water fluxes can clearly identify improvements realized within ERA5 over its direct predecessor ERA-Interim particularly in equatorial and temperate climate zones. The documented improvements are in good agreement with rain gauge validation, but GRACE also identifies three distinct regions (Sahel Zone, Okavango Catchment, Kimberley Plateau) with a slight degradation of net-fluxes in ERA5 with respect to ERA-Interim, thereby highlighting the potentially added value of non-standard daily GRACE gravity series for hydro-meteorological monitoring purposes.

2.
Nat Clim Chang ; 5(5): 358-369, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31534490

ABSTRACT

Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations and understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends and improve service applications such as the U.S. Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in the Earth system is within reach.

3.
IEEE Trans Vis Comput Graph ; 20(12): 1893-902, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356903

ABSTRACT

Researchers assess the quality of an ocean model by comparing its output to that of a previous model version or to observations. One objective of the comparison is to detect and to analyze differences and similarities between both data sets regarding geophysical processes, such as particular ocean currents. This task involves the analysis of thousands or hundreds of thousands of geographically referenced temporal profiles in the data. To cope with the amount of data, modelers combine aggregation of temporal profiles to single statistical values with visual comparison. Although this strategy is based on experience and a well-grounded body of expert knowledge, our discussions with domain experts have shown that it has two limitations: (1) using a single statistical measure results in a rather limited scope of the comparison and in significant loss of information, and (2) the decisions modelers have to make in the process may lead to important aspects being overlooked. In this article, we propose a Visual Analytics approach that broadens the scope of the analysis, reduces subjectivity, and facilitates comparison of the two data sets. It comprises three steps: First, it allows modelers to consider many aspects of the temporal behavior of geophysical processes by conducting multiple clusterings of the temporal profiles in each data set. Modelers can choose different features describing the temporal behavior of relevant processes, clustering algorithms, and parameterizations. Second, our approach consolidates the clusterings of one data set into a single clustering via a clustering ensembles approach. The consolidated clustering presents an overview of the geospatial distribution of temporal behavior in a data set. Third, a visual interface allows modelers to compare the two consolidated clusterings. It enables them to detect clusters of temporal profiles that represent geophysical processes and to analyze differences and similarities between two data sets. This work is the result of a close collaboration with ocean modelers. They employed our concept to find aspects of improvement in a new version of the Ocean Model for Circulation and Tides (OMCT).

SELECTION OF CITATIONS
SEARCH DETAIL
...