Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 May 03.
Article in English | MEDLINE | ID: mdl-38700926

ABSTRACT

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon , Glucose , Insulin Secretion , Mice, Inbred C57BL , Animals , Male , Mice , Animals, Newborn , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Glucagon/metabolism , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion/drug effects , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Mutation , Potassium Channels/metabolism , Potassium Channels/genetics
2.
Cell Rep ; 43(1): 113673, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38206814

ABSTRACT

Mitochondrial Ca2+ ([Ca2+]m) homeostasis is critical for ß-cell function and becomes disrupted during the pathogenesis of diabetes. [Ca2+]m uptake is dependent on elevations in cytoplasmic Ca2+ ([Ca2+]c) and endoplasmic reticulum Ca2+ ([Ca2+]ER) release, both of which are regulated by the two-pore domain K+ channel TALK-1. Here, utilizing a novel ß-cell TALK-1-knockout (ß-TALK-1-KO) mouse model, we found that TALK-1 limited ß-cell [Ca2+]m accumulation and ATP production. However, following exposure to a high-fat diet (HFD), ATP-linked respiration, glucose-stimulated oxygen consumption rate, and glucose-stimulated insulin secretion (GSIS) were increased in control but not TALK1-KO mice. Although ß-TALK-1-KO animals showed similar GSIS before and after HFD treatment, these mice were protected from HFD-induced glucose intolerance. Collectively, these data identify that TALK-1 channel control of ß-cell function reduces [Ca2+]m and suggest that metabolic remodeling in diabetes drives dysglycemia.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Animals , Mice , Adenosine Triphosphate/metabolism , Calcium/metabolism , Diabetes Mellitus/metabolism , Diet , Endoplasmic Reticulum/metabolism , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice, Knockout , Mitochondria/metabolism
3.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37546831

ABSTRACT

The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and ß-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.

4.
Nat Commun ; 13(1): 6461, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309517

ABSTRACT

Gi/o-coupled somatostatin or α2-adrenergic receptor activation stimulated ß-cell NKA activity, resulting in islet Ca2+ fluctuations. Furthermore, intra-islet paracrine activation of ß-cell Gi/o-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca2+ oscillations, which decreased insulin secretion. ß-cell membrane potential hyperpolarization resulting from Gi/o-GPCR activation was dependent on NKA phosphorylation by Src tyrosine kinases. Whereas, ß-cell NKA function was inhibited by cAMP-dependent PKA activity. These data reveal that NKA-mediated ß-cell membrane potential hyperpolarization is the primary and conserved mechanism for Gi/o-GPCR control of electrical excitability, Ca2+ handling, and insulin secretion.


Subject(s)
Insulin-Secreting Cells , Insulin Secretion , Insulin-Secreting Cells/metabolism , Sodium/metabolism , Receptors, G-Protein-Coupled/metabolism , Somatostatin/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
5.
Diabetes Obes Metab ; 24(9): 1741-1752, 2022 09.
Article in English | MEDLINE | ID: mdl-35546791

ABSTRACT

AIM: To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels impact glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) modulation of islet Ca2+ handling and insulin secretion. METHODS: The impact of liraglutide (GLP-1 analogue) on islet Ca2+ handling, HCN currents and insulin secretion was monitored with fluorescence microscopy, electrophysiology and enzyme immunoassays, respectively. Furthermore, liraglutide-mediated ß-to-δ-cell cross-communication was assessed following selective ablation of either mouse islet δ or ß cells. RESULTS: Liraglutide increased ß-cell Ca2+ oscillation frequency in mouse and human islets under stimulatory glucose conditions. This was dependent in part on liraglutide activation of HCN channels, which also enhanced insulin secretion. Similarly, liraglutide activation of HCN channels also increased ß-cell Ca2+ oscillation frequency in islets from rodents exposed to a diabetogenic diet. Interestingly, liraglutide accelerated Ca2+ oscillations in a majority of islet δ cells, which showed synchronized Ca2+ oscillations equivalent to ß cells; therefore, we assessed if either cell type was driving this liraglutide-mediated islet Ca2+ response. Although δ-cell loss did not impact liraglutide-mediated increase in ß-cell Ca2+ oscillation frequency, ß-cell ablation attenuated liraglutide-facilitated acceleration of δ-cell Ca2+ oscillations. CONCLUSION: The data presented here show that liraglutide-induced stimulation of islet HCN channels augments Ca2+ oscillation frequency. As insulin secretion oscillates with ß-cell Ca2+ , these findings have important implications for pulsatile insulin secretion that is probably enhanced by liraglutide activation of HCN channels and therapeutics that target GLP-1Rs for treating diabetes. Furthermore, these studies suggest that liraglutide as well as GLP-1-based therapies enhance δ-cell Ca2+ oscillation frequency and somatostatin secretion kinetics in a ß-cell-dependent manner.


Subject(s)
Islets of Langerhans , Liraglutide , Animals , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Liraglutide/pharmacology , Mice
6.
Biol Reprod ; 104(2): 468-478, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33141178

ABSTRACT

Early pregnancy features complex signaling between fetal trophoblast cells and maternal endometrium directing major peri-implantation events including localized inflammation and remodeling to establish proper placental development. Proinflammatory mediators are important for conceptus attachment, but a more precise understanding of molecular pathways regulating this process is needed to understand how the endometrium becomes receptive to implantation. Both chemokine ligand 12 (CXCL12) and its receptor CXCR4 are expressed by fetal and maternal tissues. We identified this pair as a critical driver of placental angiogenesis, but their additional importance to inflammation and trophoblast cell survival, proliferation, and invasion imply a role in syncytia formation at the fetal-maternal microenvironment. We hypothesized that CXCL12 encourages both endometrial inflammation and conceptus attachment during implantation. We employed separate ovine studies to (1) characterize endometrial inflammation during early gestation in the ewe, and (2) establish functional implications of CXCL12 at the fetal-maternal interface through targeted intrauterine infusion of the CXCR4 inhibitor AMD3100. Endometrial tissues were evaluated for inflammatory mediators, intracellular signaling events, endometrial modifications, and trophoblast syncytialization using western blotting and immunohistochemistry. Endometrial tissue from ewes receiving CXCR4 inhibitor demonstrated dysregulated inflammation and reduced AKT and NFKB, paired with elevated autophagic activity compared to control. Immunohistochemical observation revealed an impairment in endometrial surface remodeling and diminished trophoblast syncytialization following localized CXCR4 inhibition. These data suggest CXCL12-CXCR4 regulates endometrial inflammation and remodeling for embryonic implantation, and provide insight regarding mechanisms that, when dysregulated, lead to pregnancy pathologies such as intrauterine growth restriction and preeclampsia.


Subject(s)
Inflammation/veterinary , Maternal-Fetal Exchange/physiology , Pregnancy, Animal , Receptors, CXCR4/metabolism , Sheep/physiology , Animals , Cells, Cultured , Endometrium/metabolism , Female , Inflammation/metabolism , Placentation/physiology , Pregnancy , Pregnancy, Animal/physiology , Receptors, CXCR4/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...