ABSTRACT
There are no specific approved drugs for the treatment of agents of viral hemorrhagic fevers (HF) and antiviral therapies against these viruses are urgently needed. The present study characterizes the potent and selective antiviral activity against the HF causing arenavirus Junin virus (JUNV) of the compound 10-allyl-6-chloro-4-methoxy-9(10H)-acridone, designated 3f. The effectiveness of 3f to inhibit JUNV multiplication was not importantly affected by the initial multiplicity of infection, with similar effective concentration 50% (EC(50)) values in virus yield inhibition assays performed in Vero cells in the range of 0.2-40 plaque forming units (PFU)/cell. Mechanistic studies demonstrated that 3f did not affect the initial steps of adsorption and internalization. The subsequent process of viral RNA synthesis was strongly inhibited, as quantified by real time RT-PCR in compound-treated cells relative to non-treated cells. The addition of exogenous guanosine rescued the infectivity and RNA synthesis of JUNV in 3f-treated cells in a dose-dependent manner, but the reversal was partial, suggesting that the reduction of the GTP pool contributed to the antiviral activity of 3f, but it was not the main operative mechanism. The comparison of 3f with two other viral RNA inhibitors, ribavirin and mycophenolic acid, showed that ribavirin did not act against JUNV through the cellular enzyme inosine monophosphate dehydrogenase (IMPDH) inhibition whereas the anti-JUNV activity of mycophenolic acid was mainly targeted at this enzyme.
Subject(s)
Acridones/pharmacology , Allyl Compounds/pharmacology , Antiviral Agents/pharmacology , Junin virus/drug effects , RNA, Viral/drug effects , Virus Replication/drug effects , Acridones/chemistry , Allyl Compounds/chemistry , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , Gene Expression Regulation, Viral/drug effects , Guanosine/pharmacology , Junin virus/genetics , Microbial Sensitivity Tests , RNA, Viral/biosynthesis , Vero CellsABSTRACT
(1)H and (13)C spectroscopic data for 5H-[1,3]thiazolo[2,3-b]quinazolin-5-one and 12H-[1,3]benzothiazolo[2,3-b]quinazolin-12-one derivatives were fully assigned by combination of one- and two-dimensional experiments (DEPT, HMBC and HMQC). Both heterocyclic systems show similar spectroscopic properties with some remarkable differences.