Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013809

ABSTRACT

Biodegradation is among the most common issues affecting Cultural Heritage stone materials in outdoor environments. In recent years, the application of chemical agents with biocidal activity has been the most usual practice when dealing with biofilm removal. In outdoor environments, the use of these biocides is not effective enough, since the materials are constantly exposed to environmental agents and atmospheric pollutants. Thus, it becomes necessary to protect the surface of Cultural Heritage works with antimicrobial coatings to either prevent or at least limit future colonization. In this study, innovative biocides-both natural and synthetic-were applied on a Roman mosaic located in the Archaeological Park of Ostia Antica to compare their effectiveness in removing the biological degradation affecting it. In addition, an antimicrobial coating called "SI-QUAT" was applied and analyzed in situ. SI-QUAT has recently entered the market for its prevention activity against biocolonization. The biocidal activity of these products was tested and monitored using different analytical portable instruments, such as the multispectral system, the spectrocolorimeter, and the bioluminometer. The analyses showed that promising results can be obtained using the combination of the biocide and the protective effect of Preventol® RI50 and SI-QUAT.

2.
Methods Protoc ; 5(3)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35645345

ABSTRACT

Bio-colonization is a dynamic and multiphasic process headed by microorganisms. Conventional treatments to process affected stone materials include chemical biocides, whose formulations are mainly composed of quaternary ammonium salts(QAs), reported to be toxic for human health, dangerous for the environment, and not biodegradable. Accordingly, novel green and eco-friendly products are a promising alternative to treat stone materials deteriorated by microorganism colonization. In this study, the efficacy of pure essential oils (EOs) and a mix of EOs was assessed in situ and compared to a conventional biocide based on QAs, and two commercially green products based on EOs, which were taken as references, through application on a mosaic located at the Archaeological Park of Ostia Antica (Rome). The EO biocide efficacy was analyzed by ultraviolet induced luminescence, spectro-colorimetry and bio-luminometry analyses while the possibility of their permanence on simulated substrate was studied by FTIR spectroscopy. It was observed by FTIR analysis, that EOs considered volatile can leave a residue after the application; typical fingerprint bands at about 2926, 1510, and 1455 cm-1 were recorded in the EO spectra. Every tested oil was confirmed to have a biocide action although minimal in relation to the most conventional products based on QAs. The synergy of the essential oils revealed positive results, showing a stronger biocide efficacy. Further investigation should be carried out to develop the method of application and study of essential oils on cultural heritage.

3.
Materials (Basel) ; 15(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35683303

ABSTRACT

Biodeterioration is an increasingly widespread process of degradation in the context of the conservation of cultural heritage, which involves a combination of physical and chemical damages together with an aesthetic alteration of materials. For biological damage on monuments caused by pathogens, macro- and microorganisms, chemical treatments are generally used, most of the time dangerous for the environment and for the operator. In this context, new eco-friendly products represent necessary tools for the treatment of biologically deteriorated stone surfaces and represent a new challenge in the field of restoration and conservation of materials of cultural interest. A relatively new class of unconventional green solvents are deep eutectic solvents (DESs), which have peculiar chemical-physical characteristics such as being non-toxic, ecological, biodegradable, non-flammable, and stable in the presence of water. Furthermore, many DESs known in the literature have also been shown to have a biocidal action. All these characteristics make DESs very advantageous and safe, and they could be used as biocidal agents for the treatment of biodegraded surfaces of cultural heritage, being non-toxic for the environment and for the operator. So far, they are used in various fields, but they still represent a novel frontier in the cultural heritage sector. The present research aims at testing five different DESs for the first time in cultural heritage. In particular, DESs are applied to a mosaic located in the Ostia Antica Archaeological Park (Rome), and their efficiency is compared with a biocide product currently used in the restoration field, namely, Preventol RI50, through luminescence, bio-luminometry, and spectrocolorimetry analysis. The preliminary results achieved show the different behaviors of each DESs, highlighting the possibility of employing them in the field of cultural heritage. Further studies have been planned, some of which are already underway, to investigate the properties of DESs and indicate any improvements to make them more effective, both as solvents and as biocides, and easy to apply to various types of materials. The results obtained from this first study are very promising for the use of DES as a new green strategy for cleaning and conservation treatments of materials in the field of cultural heritage.

SELECTION OF CITATIONS
SEARCH DETAIL
...