Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 70(11): 2554-2567, 2021 11.
Article in English | MEDLINE | ID: mdl-34380694

ABSTRACT

Stem cell-derived ß-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably with mature adult ß-cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human ß-cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within in vitro cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 [NDPTase3]) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of in vitro sBC maturation and provide important insights toward developing functionally mature sBC for diabetes cell replacement therapy.


Subject(s)
Adenosine Triphosphatases/metabolism , Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Adenosine Triphosphatases/genetics , Calcium/metabolism , DNA, Mitochondrial , Gene Expression Regulation , Humans , Transcriptome
2.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804882

ABSTRACT

Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.


Subject(s)
Diabetes Mellitus/therapy , Insulin-Secreting Cells/metabolism , Regeneration , Animals , Cell Differentiation , Cell Proliferation , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/physiology , Stem Cell Transplantation/methods
3.
Adv Exp Med Biol ; 1236: 65-85, 2020.
Article in English | MEDLINE | ID: mdl-32304069

ABSTRACT

The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.


Subject(s)
Models, Animal , Organogenesis , Pancreas/embryology , Pancreas/pathology , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Humans , Pancreas/cytology , Pancreas, Exocrine/cytology , Pancreas, Exocrine/embryology , Pancreas, Exocrine/pathology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...