Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(13): 4871-4880, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550689

ABSTRACT

Supported bimetallic nanoparticles (NPs) often display improved catalytic performances (activity and/or selectivity). Yet, structure-activity relationships are difficult to derive due to the multitude of possible compositions, interfaces and alloys. This is notably true for bimetallic NPs used in the selective hydrogenation of CO2 to methanol, where the NPs respond dynamically to the chemical potential of the reactants and products. Herein, we use a combined computational and experimental approach that leverages ab initio Molecular Dynamics (AIMD) and Metadynamics (MTD) in conjunction with in situ X-ray absorption spectroscopy, chemisorption and CO-IR, to explore the dynamic structures and interactions with adsorbates under various CO2 hydrogenation conditions in highly active and selective silica-supported PdGa NPs. We find that PdGa alloying generates isolated Pd sites at the NP surface, changing the dominant binding modes of relevant adsorbates compared to pure Pd NPs: CO molecules mainly occupy atop sites and hydrides switch from mainly internal to atop and bridge sites. Under more oxidizing conditions, akin to CO2 hydrogenation, Ga is partially oxidized, forming a GaOX layer on the NP surface, with a partially dealloyed PdGa core and some remaining isolated Pd surface sites. Overall, these bimetallic NPs show high structural dynamics and a variable extent of alloying depending on the adsorbates relevant to CO2 hydrogenation. This work highlights that AIMD/MTD is a powerful approach to elucidate structural dynamics at a single particle level in complex catalytic systems.

2.
Chem Sci ; 15(8): 3028-3032, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38404381

ABSTRACT

Molecular-level understanding of the acid/base properties of heterogeneous catalysts requires the development of selective spectroscopic probes to establish structure-activity relationships. In this work we show that substituting the surface protons in oxide supports by isolobal N-heterocyclic carbene (NHC) Ag cations and measuring their 109Ag nuclear magnetic resonance (NMR) signatures enables to probe the speciation and to evaluate the corresponding Brønsted acidity of the substituted OH surface sites. Specifically, a series of silver N-heterocyclic carbene (NHC) Ag(i) complexes of general formula [(NHC)AgX] are synthesized and characterized, showing that the 109Ag NMR chemical shift of the series correlates with the Brønsted acidity of the conjugate acid of X- (i.e., HX), thus establishing an acidity scale based on 109Ag NMR chemical shift. The methodology is then used to evaluate the Brønsted acidity of the OH sites of representative oxide materials using Dynamic Nuclear Polarization (DNP-)enhanced solid-state NMR spectroscopy.

3.
J Am Chem Soc ; 145(47): 25595-25603, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37962437

ABSTRACT

Since its emergence over 50 years ago, the structure of surface sites in Ziegler-Natta catalysts, which are responsible for a major fraction of the world's supply of polyethylene (PE) and polypropylene (PP), has remained elusive. This is in part due to the complexity of these systems that involve multiple synthetic steps and components, namely, the MgCl2 support, a transition-metal chloride, and several organic modifiers, known as donors, that are used prior and in some instances during the activation step with alkyl aluminum. Due to the favorable nuclear magnetic resonance (NMR) properties of V and its use in Ziegler-Natta catalysts, we utilize 51V solid-state NMR spectroscopy to investigate the structure of VOCl3 on MgCl2(thf)1.5. The resulting catalyst shows ethylene polymerization activity similar to that of its Ti analogues. Using carefully benchmarked density functional theory (DFT) calculations, the experimental 51V NMR signature was analyzed to elucidate the structure of the surface sites. Using this approach, we demonstrate that the 51V NMR signature contains information about the coordination environment, i.e., the type of ancillary ligand, and the morphology of the MgCl2 support. Analysis of the NMR signature shows that the adsorption of VOCl3 on MgCl2(thf)1.5 generates a well-defined hexacoordinated V-oxo species containing one alkoxy and four chloride ligands, whose local geometry results from the interaction with an amorphous MgCl2 surface. This study illustrates how NMR spectroscopy, which is highly sensitive to the local environment of the investigated nuclei, here V, enables us to identify the exact coordination sphere and to address the effect of the support morphology on surface site structures.

4.
JACS Au ; 3(8): 2314-2322, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37654588

ABSTRACT

The synthesis of well-defined materials as model systems for catalysis and related fields is an important pillar in the understanding of catalytic processes at a molecular level. Various approaches employing organometallic precursors have been developed and established to make monodispersed supported nanoparticles, nanocrystals, and films. Using rational design principles, a new family of precursors based on group 10 metals suitable for the generation of small and monodispersed nanoparticles on metal oxides has been developed. Particle formation on SiO2 and Al2O3 supports is demonstrated, as well as the potential in the synthesis of bimetallic catalyst materials, exemplified by a PdGa/SiO2 system capable of hydrogenation of CO2 to methanol. In addition to surface organometallic chemistry (SOMC), it is envisioned that these precursors could also be employed in related applications, such as atomic layer deposition, due to their inherent volatility and relative thermal stability.

5.
Ind Eng Chem Res ; 62(34): 13594-13611, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37663169

ABSTRACT

The optimization of the air-solid contactor is critical to improve the efficiency of the direct air capture (DAC) process. To enable comparison of contactors and therefore a step toward optimization, two contactors are prepared in the form of pellets and wash-coated honeycomb monoliths. The desired amine functionalities are successfully incorporated onto these industrially relevant pellets by means of a procedure developed for powders, providing materials with a CO2 uptake not influenced by the morphology and the structure of the materials according to the sorption measurements. Furthermore, the amine functionalities are incorporated onto alumina wash-coated monoliths that provide a similar CO2 uptake compared to the pellets. Using breakthrough measurements, dry CO2 uptakes of 0.44 and 0.4 mmol gsorbent-1 are measured for pellets and for a monolith, respectively. NMR and IR studies of CO2 uptake show that the CO2 adsorbs mainly in the form of ammonium carbamate. Both contactors are characterized by estimated Toth isotherm parameters and linear driving force (LDF) coefficients to enable an initial comparison and provide information for further studies of the two contactors. LDF coefficients of 1.5 × 10-4 and of 1.2 × 10-3 s-1 are estimated for the pellets and for a monolith, respectively. In comparison to the pellets, the monolith therefore exhibits particularly promising results in terms of adsorption kinetics due to its hierarchical pore structure. This is reflected in the productivity of the adsorption step of 6.48 mol m-3 h-1 for the pellets compared to 7.56 mol m-3 h-1 for the monolith at a pressure drop approximately 1 order of magnitude lower, making the monoliths prime candidates to enhance the efficiency of DAC processes.

6.
JACS Au ; 3(9): 2536-2549, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37772188

ABSTRACT

The direct synthesis of methanol via the hydrogenation of CO2, if performed efficiently and selectively, is potentially a powerful technology for CO2 mitigation. Here, we develop an active and selective Cu-Zn/SiO2 catalyst for the hydrogenation of CO2 by introducing copper and zinc onto dehydroxylated silica via surface organometallic chemistry and atomic layer deposition, respectively. At 230 °C and 25 bar, the optimized catalyst shows an intrinsic methanol formation rate of 4.3 g h-1 gCu-1 and selectivity to methanol of 83%, with a space-time yield of 0.073 g h-1 gcat-1 at a contact time of 0.06 s g mL-1. X-ray absorption spectroscopy at the Cu and Zn K-edges and X-ray photoelectron spectroscopy studies reveal that the CuZn alloy displays reactive metal support interactions; that is, it is stable under H2 atmosphere and unstable under conditions of CO2 hydrogenation, indicating that the dealloyed structure contains the sites promoting methanol synthesis. While solid-state nuclear magnetic resonance studies identify methoxy species as the main stable surface adsorbate, transient operando diffuse reflectance infrared Fourier transform spectroscopy indicates that µ-HCOO*(ZnOx) species that form on the Cu-Zn/SiO2 catalyst are hydrogenated to methanol faster than the µ-HCOO*(Cu) species that are found in the Zn-free Cu/SiO2 catalyst, supporting the role of Zn in providing a higher activity in the Cu-Zn system.

7.
J Am Chem Soc ; 145(23): 12928-12934, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37267262

ABSTRACT

Selective oxidation of methane to methanol by dioxygen (O2) is an appealing route for upgrading abundant methane resource and represents one of the most challenging reactions in chemistry due to the overwhelmingly higher reactivity of the product (methanol) versus the reactant (methane). Here, we report that gold nanoparticles dispersed on mordenite efficiently catalyze the selective oxidation of methane to methanol by molecular oxygen in aqueous medium in the presence of carbon monoxide. The methanol productivity reaches 1300 µmol gcat-1 h-1 or 280 mmol gAu-1 h-1 with 75% selectivity at 150 °C, outperforming most catalysts reported under comparable conditions. Both hydroxyl radicals and hydroperoxide species participate in the activation and conversion of methane, while it is shown that the lower affinity of methanol on gold mainly accounts for higher methanol selectivity.

8.
J Am Chem Soc ; 145(25): 13526-13530, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37318330

ABSTRACT

Au-Zn catalysts have previously been shown to promote the hydrogenation of CO2 to methanol, but their active state is poorly understood. Here, silica-supported bimetallic Au-Zn alloys, prepared by surface organometallic chemistry (SOMC), are shown to be proficient catalysts for hydrogenation of CO2 to methanol. In situ X-ray absorption spectroscopy (XAS), in conjunction with gas-switching experiments, is used to amplify subtle changes occurring at the surface of this tailored catalyst during reaction. Consequently, an Au-Zn alloy is identified and is shown to undergo subsequent reversible redox changes under reaction conditions according to multivariate curve resolution alternating least-squares (MCR-ALS) analysis. These results highlight the role of alloying and dealloying in Au-based CO2 hydrogenation catalysts and illustrate the role of these reversible processes in driving reactivity.

9.
Chem Sci ; 14(20): 5379-5385, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37234901

ABSTRACT

Rh-based catalysts modified by transition metals have been intensively studied for CO2 hydrogenation due to their high activity. However, understanding the role of promoters at the molecular level remains challenging due to the ill-defined structure of heterogeneous catalysts. Here, we constructed well-defined RhMn@SiO2 and Rh@SiO2 model catalysts via surface organometallic chemistry combined with thermolytic molecular precursor (SOMC/TMP) approach to rationalize the promotional effect of Mn in CO2 hydrogenation. We show that the addition of Mn shifts the products from almost pure CH4 to a mixture of methane and oxygenates (CO, CH3OH, and CH3CH2OH) upon going from Rh@SiO2 to RhMn@SiO2. In situ X-ray absorption spectroscopy (XAS) confirms that the MnII is atomically dispersed in the vicinity of metallic Rh nanoparticles and enables to induce the oxidation of Rh to form the Mn-O-Rh interface under reaction conditions. The formed interface is proposed to be key to maintaining Rh+ sites, which is related to suppressing the methanation reaction and stabilizing the formate species as evidenced by in situ DRIFTS to promote the formation of CO and alcohols.

10.
Catal Sci Technol ; 12(19): 5861-5868, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36324825

ABSTRACT

Catalysts with well-defined isolated Ni(ii) surface sites have been prepared on three silica-based supports. The outer shells of the support were comprised either of an amorphous aluminosilicate or amorphous alumina (AlO x ) layer - associated with a high and low density of strong Brønsted acid sites (BAS), respectively. When tested for ethene-to-propene conversion, Ni catalysts with a higher density of strong BAS demonstrate a higher initial activity and productivity to propene. On all three catalysts, the propene productivity correlates closely with the concentration of C8 aromatics, suggesting that propene may form via a carbon-pool mechanism. While all three catalysts deactivate with time on stream, the deactivation of catalysts with Ni(ii) sites on AlO x , i.e., containing surface Ni aluminate sites, is shown to be reversible by calcination (coke removal), in contrast to the deactivation of surface Ni silicate or aluminosilicate sites, which deactivate irreversibly by forming Ni nanoparticles.

11.
12.
Inorg Chem ; 61(27): 10575-10586, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35766898

ABSTRACT

The development of an efficient heterogeneous catalyst for storing H2 into CO2 and releasing it from the produced formic acid, when needed, is a crucial target for overcoming some intrinsic criticalities of green hydrogen exploitation, such as high flammability, low density, and handling. Herein, we report an efficient heterogeneous catalyst for both reactions prepared by immobilizing a molecular iridium organometallic catalyst onto a high-surface mesoporous silica, through a sol-gel methodology. The presence of tailored single-metal catalytic sites, derived by a suitable choice of ligands with desired steric and electronic characteristics, in combination with optimized support features, makes the immobilized catalyst highly active. Furthermore, the information derived from multinuclear DNP-enhanced NMR spectroscopy, elemental analysis, and Ir L3-edge XAS indicates the formation of cationic iridium sites. It is quite remarkable to note that the immobilized catalyst shows essentially the same catalytic activity as its molecular analogue in the hydrogenation of CO2. In the reverse reaction of HCOOH dehydrogenation, it is approximately twice less active but has no induction period.


Subject(s)
Carbon Dioxide , Iridium , Carbon Dioxide/chemistry , Formates , Hydrogenation , Iridium/chemistry , Picolinic Acids , Silicon Dioxide
13.
JACS Au ; 1(4): 450-458, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34467307

ABSTRACT

The direct conversion of CO2 to CH3OH represents an appealing strategy for the mitigation of anthropogenic CO2 emissions. Here, we report that small, narrowly distributed alloyed PdGa nanoparticles, prepared via surface organometallic chemistry from silica-supported GaIII isolated sites, selectively catalyze the hydrogenation of CO2 to CH3OH. At 230 °C and 25 bar, high activity (22.3 molMeOH molPd -1 h-1) and selectivity for CH3OH/DME (81%) are observed, while the corresponding silica-supported Pd nanoparticles show low activity and selectivity. X-ray absorption spectroscopy (XAS), IR, NMR, and scanning transmission electron microscopy-energy-dispersive X-ray provide evidence for alloying in the as-synthesized material. In situ XAS reveals that there is a dynamic dealloying/realloying process, through Ga redox, while operando diffuse reflectance infrared Fourier transform spectroscopy demonstrates that, while both methoxy and formate species are observed in reaction conditions, the relative concentrations are inversely proportional, as the chemical potential of the gas phase is modulated. High CH3OH selectivities, across a broad range of conversions, are observed, showing that CO formation is suppressed for this catalyst, in contrast to reported Pd catalysts.

14.
J Am Chem Soc ; 143(18): 6767-6780, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33942617

ABSTRACT

Processes that rely on heterogeneous catalysts underpin the production of bulk chemicals and fuels. In spite of this, understanding of the interplay between the structure and reactivity of these complex materials remains elusive-rendering rational improvement of existing systems challenging. Herein, we describe efforts to understand complex materials capable of selective thermochemical conversion of CO2 to methanol using a surface organometallic chemistry (SOMC) approach. In particular, we focus on the remarkable, but often subtle, roles of metal-metal synergy and metal-support interfaces in determining the reactivity of many different systems for the conversion of CO2 to methanol. Specifically, we explore synthetic and analytical strategies for the systematic study of synergistic behaviors of multi-component catalytic systems in the context of CO2 hydrogenation, and we discuss how the insights obtained can inform the design of materials. We also address limitations of the approach employed and opportunities to expand upon the observations emerging from this work, before attempting to establish transposable and generalizable trends for Cu-based catalysts and beyond.

15.
Chem Soc Rev ; 50(9): 5806-5822, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33972978

ABSTRACT

The selective conversion of light alkanes (C2-C6 saturated hydrocarbons) to the corresponding alkene is an appealing strategy for the petrochemical industry in view of the availability of these feedstocks, in particular with the emergence of Shale gas. Here, we present a review of model dehydrogenation catalysts of light alkanes prepared via surface organometallic chemistry (SOMC). A specific focus of this review is the use of molecular strategies for the deconvolution of complex heterogeneous materials that are proficient in enabling dehydrogenation reactions. The challenges associated with the proposed reactions are highlighted, as well as overriding themes that can be ascertained from the systematic study of these challenging reactions using model SOMC catalysts.

16.
Chem Sci ; 9(42): 8035-8045, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30568765

ABSTRACT

A series of rare earth complexes of the form Ln(LR)3 supported by bidentate ortho-aryloxide-NHC ligands are reported (LR = 2-O-3,5-tBu2-C6H2(1-C{N(CH)2N(R)})); R = iPr, tBu, Mes; Ln = Ce, Sm, Eu). The cerium complexes cleanly and quantitatively insert carbon dioxide exclusively into all three cerium carbene bonds, forming Ce(LR·CO2)3. The insertion is reversible only for the mesityl-substituted complex Ce(LMes)3. Analysis of the capacity of Ce(LR)3 to insert a range of heteroallenes that are isoelectronic with CO2 reveals the solvent and ligand size dependence of the selectivity. This is important because only the complexes capable of reversible CO2-insertion are competent catalysts for catalytic conversions of CO2. Preliminary studies show that only Ce(LMes·CO2)3 catalyses the formation of propylene carbonate from propylene oxide under 1 atm of CO2 pressure. The mono-ligand complexes can be isolated from reactions using LiCe(NiPr2)4 as a starting material; LiBr adducts [Ce(LR)(NiPr2)Br·LiBr(THF)]2 (R = Me, iPr) are reported, along with a hexanuclear N-heterocyclic dicarbene [Li2Ce3(OArCMe-H)3(NiPr2)5(THF)2]2 by-product. The analogous para-aryloxide-NHC proligand (p-LMes = 4-O-2,6-tBu2-C6H2(1-C{N(CH)2NMes}))) has been made for comparison, but the rare earth tris-ligand complexes Ln(p-LMes)3(THF)2 (Ln = Y, Ce) are too reactive for straightforward Lewis pair separated chemistry to be usefully carried out.

SELECTION OF CITATIONS
SEARCH DETAIL
...