Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1011, 2019.
Article in English | MEDLINE | ID: mdl-31497030

ABSTRACT

Due to climate change, the effect of temperature on crops has become a global concern. It has been reported that minor changes in temperature can cause large decreases in crop yield. While not a crop, the model Brachypodium distachyon can help to efficiently investigate ambient temperature responses of temperate grasses, which include wheat and barley. Here, we use different accessions to explore the effect of ambient temperature on Brachypodium phenology. We recorded leaf initiation, heading time, leaf and branch number at heading, seed set time, seed weight, seed size, seed dormancy, and seed germination at different temperatures. We found that warmer temperatures promote leaf initiation so that leaf number at heading is positively correlated to temperature. Heading time is not correlated to temperature but accessions show an optimal temperature at which heading is earliest. Cool temperatures prolong seed maturation which increases seed weight. The progeny seeds of plants grown at these cool ambient temperatures show stronger dormancy, while imbibition of seeds at low temperature improves germination. Among all developmental stages, it is the duration of seed maturation that is most sensitive to temperature. The results we found reveal that temperature responses in Brachypodium are highly conserved with temperate cereals, which makes Brachypodium a good model to explore temperature responsive pathways in temperate grasses.

2.
Front Plant Sci ; 10: 72, 2019.
Article in English | MEDLINE | ID: mdl-30774642

ABSTRACT

Functional conservation of RNAs between different species is a key argument for their importance. While few long non-coding RNAs are conserved at the sequence level, many long non-coding RNAs have been identified that only share a position relative to other genes. It remains largely unknown whether and how these lncRNAs are conserved beyond their position. In Arabidopsis thaliana, the lncRNA COOLAIR is transcribed antisense from FLOWERING LOCUS C (FLC) in response to cold. Despite relatively low sequence similarity, the COOLAIR expression pattern and in vitro RNA secondary structure are highly conserved across the family Brassicaceae, which originated some 50 mya. It is unclear, however, whether COOLAIR functions in distantly related species such as monocots, which diverged some 150 mya. Here, we identified antisense lncRNAs from FLC homologs in various monocot species that share no sequence similarity with A. thaliana COOLAIR. Yet similar to COOLAIR, we found that BdODDSOC1 antisense (BdCOOLAIR1) and BdODDSOC2 antisense (BdCOOLAIR2) are induced by cold in a Brachypodium distachyon winter accession. Across B. distachyon accessions, the sequences of BdCOOLAIR1 and BdCOOLAIR2 are less conserved than exons but more conserved than flanking regions, suggesting a function for the transcript itself. Knock down of the BdODDSOC2 non-overlapping BdCOOLAIR2 transcript did not show a morphological phenotype, but did result in significantly higher BdODDSOC2 expression during cold, indicating that BdCOOLAIR2 performs a role in cis in the rate of BdODDSOC2 silencing. This functional similarity between eudicot and monocot species reveals ancient conservation or convergent evolution of FLC antisense transcription. Either scenario supports its functional importance.

3.
Nat Commun ; 8(1): 2184, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259172

ABSTRACT

While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.


Subject(s)
Biological Variation, Population/genetics , Brachypodium/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Genome, Plant/genetics , Chromosomes, Plant/genetics , Genetic Variation/genetics , Phylogeny , Synteny/genetics
4.
Plant Physiol ; 173(2): 1301-1315, 2017 02.
Article in English | MEDLINE | ID: mdl-28034954

ABSTRACT

Winter cereals require prolonged cold to transition from vegetative to reproductive development. This process, referred to as vernalization, has been extensively studied in Arabidopsis (Arabidopsis thaliana). In Arabidopsis, a key flowering repressor called FLOWERING LOCUS C (FLC) quantitatively controls the vernalization requirement. By contrast, in cereals, the vernalization response is mainly regulated by the VERNALIZATION genes, VRN1 and VRN2 Here, we characterize ODDSOC2, a recently identified FLC ortholog in monocots, knowing that it belongs to the FLC lineage. By studying its expression in a diverse set of Brachypodium accessions, we find that it is a good predictor of the vernalization requirement. Analyses of transgenics demonstrated that BdODDSOC2 functions as a vernalization-regulated flowering repressor. In most Brachypodium accessions BdODDSOC2 is down-regulated by cold, and in one of the winter accessions in which this down-regulation was evident, BdODDSOC2 responded to cold before BdVRN1. When stably down-regulated, the mechanism is associated with spreading H3K27me3 modifications at the BdODDSOC2 chromatin. Finally, homoeolog-specific gene expression analyses identify TaAGL33 and its splice variant TaAGL22 as the FLC orthologs in wheat (Triticum aestivum) behaving most similar to Brachypodium ODDSOC2 Overall, our study suggests that ODDSOC2 is not only phylogenetically related to FLC in eudicots but also functions as a flowering repressor in the vernalization pathway of Brachypodium and likely other temperate grasses. These insights could prove useful in breeding efforts to refine the vernalization requirement of temperate cereals and adapt varieties to changing climates.


Subject(s)
Brachypodium/physiology , Plant Proteins/genetics , Triticum/physiology , Arabidopsis Proteins/genetics , Brachypodium/genetics , Chromatin/genetics , Chromatin/metabolism , Cold Temperature , Flowers/genetics , Gene Expression Regulation, Plant , Gene Knockdown Techniques , MADS Domain Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Repressor Proteins/genetics , Repressor Proteins/metabolism , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...