Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28250468

ABSTRACT

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Subject(s)
Crystallography, X-Ray/methods , Lasers , Acoustics , Photosystem II Protein Complex/chemistry , Phytochrome/chemistry , Ribonucleotide Reductases/chemistry , Spectrometry, X-Ray Emission/methods
2.
Nature ; 540(7633): 453-457, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27871088

ABSTRACT

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.


Subject(s)
Cyanobacteria/chemistry , Electrons , Lasers , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Temperature , Ammonia/chemistry , Ammonia/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Crystallization , Manganese/metabolism , Models, Molecular , Oxygen/metabolism , Substrate Specificity , Water/metabolism
3.
Electrophoresis ; 32(22): 3188-95, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22025027

ABSTRACT

Microflow cytometry represents a promising tool for the investigation of diagnostic and prognostic cellular cancer markers, particularly if integrated within a device that allows primary cells to be freshly isolated from the solid tumour biopsies that more accurately reflect patient-specific in vivo tissue microenvironments at the time of staining. However, current tissue processing techniques involve several sequential stages with concomitant cell losses, and as such are inappropriate for use with small biopsies. Accordingly, we present a simple method for combined antibody-labelling and dissociation of heterogeneous cells from a tumour mass, which reduces the number of processing steps. Perfusion of ex vivo tissue at 4°C with antibodies and enzymes slows cellular activity while allowing sufficient time for the diffusion of minimally active enzymes. In situ antibody-labelled cells are then dissociated at 37°C from the tumour mass, whereupon hydrogel-filled channels allow the release of relatively low cell numbers (<1000) into a biomimetic microenvironment. This novel approach to sample processing is then further integrated with hydrogel-based electrokinetic transport of the freshly liberated fluorescent cells for downstream detection. It is anticipated that this integrated microfluidic methodology will have wide-ranging biomedical and clinical applications.


Subject(s)
Biomarkers, Tumor/analysis , Cell Separation/instrumentation , Electrochemical Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis/instrumentation , Antibodies/chemistry , Biopsy/methods , Cell Line, Tumor , Cell Separation/methods , Electrochemical Techniques/methods , Equipment Design , Fluorescent Dyes/chemistry , Head and Neck Neoplasms/chemistry , Head and Neck Neoplasms/pathology , Histocytochemistry , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods
4.
Lab Chip ; 11(3): 443-8, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21072429

ABSTRACT

Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman™, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.


Subject(s)
DNA/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Nucleic Acid Amplification Techniques/methods , Solid Phase Extraction/methods , Amelogenin/genetics , Electrophoresis, Capillary/methods , Gels/chemistry , Humans , Polymerase Chain Reaction , Polymers , Silicon Dioxide/chemistry
5.
Lab Chip ; 10(13): 1725-8, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20414500

ABSTRACT

A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.


Subject(s)
Heating/instrumentation , Microfluidic Analytical Techniques/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Thermography/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves
6.
Lab Chip ; 9(23): 3430-2, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19904411

ABSTRACT

A novel DNA loading methodology is presented for performing DNA extraction on a microfluidic system. DNA in a chaotropic salt solution was manually loaded onto a silica monolith orthogonal to the subsequent flow of wash and elution solutions. DNA was successfully extracted from buccal swabs using electro-osmotic pumping (EOP) coupled with in situ reagents contained within a 1.5% agarose gel matrix. The extracted DNA was of sufficient quantity and purity for polymerase chain reaction (PCR) amplification.


Subject(s)
DNA/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Female , Humans , Microfluidic Analytical Techniques/economics , Mouth Mucosa/cytology , Polymerase Chain Reaction , Silicon Dioxide/chemistry , Specimen Handling/economics , Specimen Handling/instrumentation
7.
Anal Chim Acta ; 652(1-2): 231-3, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19786185

ABSTRACT

DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.


Subject(s)
DNA/isolation & purification , Microfluidic Analytical Techniques/methods , RNA/chemistry , Silicon Dioxide/chemistry , Microfluidic Analytical Techniques/instrumentation , Solid Phase Extraction
8.
Lab Chip ; 9(11): 1596-600, 2009 Jun 07.
Article in English | MEDLINE | ID: mdl-19458868

ABSTRACT

A silica monolith used to support both electro-osmotic pumping (EOP) and the extraction/elution of DNA coupled with gel-supported reagents is described. The benefits of the combined EOP extraction/elution system were illustrated by combining DNA extraction and gene amplification using the polymerase chain reaction (PCR) process. All the reagents necessary for both processes were supported within pre-loaded gels that allow the reagents to be stored at 4 degrees C for up to four weeks in the microfluidic device. When carrying out an analysis the crude sample only needed to be hydrodynamically introduced into the device which was connected to an external computer controlled power supply via platinum wire electrodes. DNA was extracted with 65% efficiency after loading lysed cells onto a silica monolith. Ethanol contained within an agarose gel matrix was then used to wash unwanted debris away from the sample by EOP (100 V cm(-1) for 5 min). The retained DNA was subsequently eluted from the monolith by water contained in a second agarose gel, again by EOP using an electric field of 100 V cm(-1) for 5 min, and transferred into the PCR reagent containing gel. The eluted DNA in solution was successfully amplified by PCR, confirming that the concept of a complete self-contained microfluidic device could be realised for DNA sample clean up and amplification, using a simple pumping and on-chip reagent storage methodology.


Subject(s)
DNA/isolation & purification , Electroosmosis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Amelogenin/genetics , Electroosmosis/methods , Equipment Design , Ethanol/chemistry , Gels/chemistry , Humans , Microfluidic Analytical Techniques/methods , Polymerase Chain Reaction , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...