Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630859

ABSTRACT

Thousands of barley (Hordeum vulgare L.) mutants have been isolated over the last century, and many are stored in gene banks across various countries. In the present work, we developed a pipeline to efficiently identify causal mutations in barley. The pipeline is also efficient for mutations located in centromeric regions. Through bulked-segregant analyses using whole genome sequencing of pooled F2 seedlings, we mapped two mutations and identified a limited number of candidate genes. We applied the pipeline on F2-mapping populations made from xan-j.59 (unknown mutation) and xan-l.82 (previously known). The Xantha-j (xan-j) gene was identified as encoding chlorophyll synthase, which catalyzes the last step in the chlorophyll biosynthetic pathway: the addition of a phytol moiety to the propionate side chain of chlorophyllide. Key amino-acid residues in the active site, including the binding sites of the isoprenoid and chlorophyllide substrates, were analyzed in an AlphaFold2-generated structural model of the barley chlorophyll synthase. Three allelic mutants, xan-j.19, xan-j.59, and xan-j.64 were characterized. While xan-j.19 is a one-base pair deletion and xan-j.59 is a nonsense mutation, xan-j.64 causes an S212F substitution in chlorophyll synthase. Our analyses of xan-j.64 and treatment of growing barley with clomazone, an inhibitor of chloroplastic isoprenoid biosynthesis, suggest that binding of the isoprenoid substrate is a prerequisite for the stable maintenance of chlorophyll synthase in the plastid. We further suggest that chlorophyll synthase is a sensor for coordinating chlorophyll and isoprenoid biosynthesis.

2.
Plant J ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652034

ABSTRACT

Barley produces several specialized metabolites, including five α-, ß-, and γ-hydroxynitrile glucosides (HNGs). In malting barley, presence of the α-HNG epiheterodendrin gives rise to undesired formation of ethyl carbamate in the beverage production, especially after distilling. Metabolite-GWAS identified QTLs and underlying gene candidates possibly involved in the control of the relative and absolute content of HNGs, including an undescribed MATE transporter. By screening 325 genetically diverse barley accessions, we discovered three H. vulgare ssp. spontaneum (wild barley) lines with drastic changes in the relative ratios of the five HNGs. Knock-out (KO)-lines, isolated from the barley FIND-IT resource and each lacking one of the functional HNG biosynthetic genes (CYP79A12, CYP71C103, CYP71C113, CYP71U5, UGT85F22 and UGT85F23) showed unprecedented changes in HNG ratios enabling assignment of specific and mutually dependent catalytic functions to the biosynthetic enzymes involved. The highly similar relative ratios between the five HNGs found across wild and domesticated barley accessions indicate assembly of the HNG biosynthetic enzymes in a metabolon, the functional output of which was reconfigured in the absence of a single protein component. The absence or altered ratios of the five HNGs in the KO-lines did not change susceptibility to the fungal phytopathogen Pyrenophora teres causing net blotch. The study provides a deeper understanding of the organization of HNG biosynthesis in barley and identifies a novel, single gene HNG-0 line in an elite spring barley background for direct use in breeding of malting barley, eliminating HNGs as a source of ethyl carbamate formation in whisky production.

3.
Hereditas ; 161(1): 11, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454479

ABSTRACT

BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.


Subject(s)
Hordeum , Hordeum/genetics , Plant Breeding , Mutagenesis , Genomics
4.
Front Genet ; 14: 1213815, 2023.
Article in English | MEDLINE | ID: mdl-37470037

ABSTRACT

Many induced mutants are available in barley (Hordeum vulgare L.). One of the largest groups of induced mutants is the Erectoides (ert) mutants, which is characterized by a compact and upright spike and a shortened culm. One isolated mutant, ert-k.32, generated by X-ray treatment and registered in 1958 under the named "Pallas", was the first ever induced barley mutant to be released on the market. Its value was improved culm strength and enhanced lodging resistance. In this study, we aimed to identify the casual gene of the ert-k.32 mutant by whole genome sequencing of allelic ert-k mutants. The suggested Ert-k candidate gene, HORVU.MOREX.r3.6HG0574880, is located in the centromeric region of chromosome 6H. The gene product is an alpha/beta hydrolase with a catalytic triad in the active site composed of Ser-167, His-261 and Asp-232. In comparison to proteins derived from the Arabidopsis genome, ErtK is most similar to a thioesterase with de-S-acylation activity. This suggests that ErtK catalyzes post-translational modifications by removing fatty acids that are covalently attached to cysteine residues of target proteins involved in regulation of plant architecture and important commercial traits such as culm stability and lodging resistance.

5.
Nature ; 612(7939): 283-291, 2022 12.
Article in English | MEDLINE | ID: mdl-36477129

ABSTRACT

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.


Subject(s)
DNA, Environmental , Ecosystem , Ecology , Fossils , Greenland
8.
Sci Adv ; 8(34): eabq2266, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36001660

ABSTRACT

Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.

10.
Nature ; 600(7887): 86-92, 2021 12.
Article in English | MEDLINE | ID: mdl-34671161

ABSTRACT

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Subject(s)
Biota , DNA, Ancient/analysis , DNA, Environmental/analysis , Metagenomics , Animals , Arctic Regions , Climate Change/history , Databases, Genetic , Datasets as Topic , Extinction, Biological , Geologic Sediments , Grassland , Greenland , Haplotypes/genetics , Herbivory/genetics , History, Ancient , Humans , Lakes , Mammoths , Mitochondria/genetics , Perissodactyla , Permafrost , Phylogeny , Plants/genetics , Population Dynamics , Rain , Siberia , Spatio-Temporal Analysis , Wetlands
11.
Planta ; 254(1): 9, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34148131

ABSTRACT

MAIN CONCLUSION: Both mutant ert-c.1 and ert-d.7 carry T2-T3 translocations in the Ert-c gene. Principal coordinate analyses revealed the translocation types and translocation breakpoints. Mutant ert-d.7 is an Ert-c Ert-d double mutant. Mutations in the Ert-c and Ert-d loci are among the most common barley mutations affecting plant architecture. The mutants have various degrees of erect and compact spikes, often accompanied with short and stiff culms. In the current study, complementation tests, linkage mapping, principal coordinate analyses and fine mapping were conducted. We conclude that the original ert-d.7 mutant does not only carry an ert-d mutation but also an ert-c mutation. Combined, mutations in Ert-c and Ert-d cause a pyramid-dense spike phenotype, whereas mutations in only Ert-c or Ert-d give a pyramid and dense phenotype, respectively. Associations between the Ert-c gene and T2-T3 translocations were detected in both mutant ert-c.1 and ert-d.7. Different genetic association patterns indicate different translocation breakpoints in these two mutants. Principal coordinate analysis based on genetic distance and screening of recombinants from all four ends of polymorphic regions was an efficient way to narrow down the region of interest in translocation-involved populations. The Ert-c gene was mapped to the marker interval of 2_0801to1_0224 on 3HL near the centromere. The results illuminate a complex connection between two single genes having additive effects on barley spike architecture and will facilitate the identification of the Ert-c and Ert-d genes.


Subject(s)
Hordeum , Base Sequence , Chromosome Mapping , Hordeum/genetics , Mutation , Phenotype
12.
Plant Sci ; 308: 110792, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034860

ABSTRACT

Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-ß-xylanase and six ß-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a ß-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.


Subject(s)
Endo-1,4-beta Xylanases/genetics , Genes, Plant , Hordeum/genetics , Plant Proteins/genetics , Xylosidases/genetics , Amino Acid Sequence , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Gene Expression Profiling , Hordeum/enzymology , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Spatio-Temporal Analysis , Xylosidases/chemistry , Xylosidases/metabolism
14.
Front Plant Sci ; 12: 641325, 2021.
Article in English | MEDLINE | ID: mdl-33732278

ABSTRACT

Starch is synthesized in the endosperm of developing barley grain, where it functions as the primary source of stored carbohydrate. In germinated grain these starch reserves are hydrolyzed to small oligosaccharides and glucose, which are transported to the embryo to support the growth of the developing seedling. Some of the mobilized glucose is transiently stored as starch in the scutellum of germinated grain. These processes are crucial for early seedling vigor, which is a key determinant of crop productivity and global food security. Several starch synthases (SS), starch-branching enzymes (SBEs), and starch debranching enzymes (isoamylases, ISA), together with a limit dextrinase (LD), have been implicated in starch synthesis from nucleotide-sugar precursors. Starch synthesis occurs both in the developing endosperm and in the scutellum of germinated grain. For the complete depolymerization of starch to glucose, α-amylase (Amy), ß-amylase (Bmy), isoamylase (ISA), limit dextrinase (LD), and α-glucosidase (AGL) are required. Most of these enzymes are encoded by gene families of up to 10 or more members. Here RNA-seq transcription data from isolated tissues of intact developing and germinated barley grain have allowed us to identify the most important, specific gene family members for each of these processes in vivo and, at the same time, we have defined in detail the spatio-temporal coordination of gene expression in different tissues of the grain. A transcript dataset for 81,280 genes is publicly available as a resource for investigations into other cellular and biochemical processes that occur in the developing grain from 6 days after pollination.

15.
J Exp Bot ; 71(18): 5333-5347, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32643753

ABSTRACT

Crops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance. Secondly, some minor (orphan) crops cultivated in marginal areas are already drought and salt tolerant. Improving the agronomic performance of these crops may be an effective way to increase crop and food diversity, and an alternative to engineering tolerance in major crops. Quinoa (Chenopodium quinoa Willd.), a nutritious minor crop that tolerates drought and salinity better than most other crops, is an ideal candidate for both of these approaches. Although quinoa has yet to reach its potential as a fully domesticated crop, breeding efforts to improve the plant have been limited. Molecular and genetic techniques combined with traditional breeding are likely to change this picture. Here we analyse protein-coding sequences in the quinoa genome that are orthologous to domestication genes in established crops. Mutating only a limited number of such genes by targeted mutagenesis appears to be a promising route for accelerating the improvement of quinoa and generating a nutritious high-yielding crop that can meet the future demand for food production in a changing climate.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Droughts , Plant Breeding , Salinity , Salt Stress
16.
Plant Cell Rep ; 39(1): 47-61, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31541262

ABSTRACT

KEY MESSAGE: Analyses of barley mat-c loss of function mutants reveal deletions, splice-site mutations and nonsynonymous substitutions in a key gene regulating early flowering. Optimal timing of flowering is critical for reproductive success and crop yield improvement. Several major quantitative trait loci for flowering time variation have been identified in barley. In the present study, we analyzed two near-isogenic lines, BW507 and BW508, which were reported to carry two independent early-flowering mutant loci, mat-b.7 and mat-c.19, respectively. Both introgression segments are co-localized in the pericentromeric region of chromosome 2H. We mapped the mutation in BW507 to a 31 Mbp interval on chromosome 2HL and concluded that BW507 has a deletion of Mat-c, which is an ortholog of Antirrhinum majus CENTRORADIALIS (AmCEN) and Arabidopsis thaliana TERMINAL FLOWER1 (AtTFL1). Contrary to previous reports, our data showed that both BW507 and BW508 are Mat-c deficient and none of them are mat-b.7 derived. This work complements previous studies by identifying the uncharacterized mat-c.19 mutant and seven additional mat-c mutants. Moreover, we explored the X-ray structure of AtTFL1 for prediction of the functional effects of nonsynonymous substitutions caused by mutations in Mat-c.


Subject(s)
Flowers/genetics , Hordeum/genetics , Plant Proteins/metabolism , Alleles , Arabidopsis Proteins/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Phenotype , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Deletion
17.
J Exp Bot ; 71(6): 1870-1884, 2020 03 25.
Article in English | MEDLINE | ID: mdl-31819970

ABSTRACT

Mobilization of reserves in germinated cereal grains is critical for early seedling vigour, global crop productivity, and hence food security. Gibberellins (GAs) are central to this process. We have developed a spatio-temporal model that describes the multifaceted mechanisms of GA regulation in germinated barley grain. The model was generated using RNA sequencing transcript data from tissues dissected from intact, germinated grain, which closely match measurements of GA hormones and their metabolites in those tissues. The data show that successful grain germination is underpinned by high concentrations of GA precursors in ungerminated grain, the use of independent metabolic pathways for the synthesis of several bioactive GAs during germination, and a capacity to abort bioactive GA biosynthesis. The most abundant bioactive form is GA1, which is synthesized in the scutellum as a glycosyl conjugate that diffuses to the aleurone, where it stimulates de novo synthesis of a GA3 conjugate and GA4. Synthesis of bioactive GAs in the aleurone provides a mechanism that ensures the hormonal signal is relayed from the scutellum to the distal tip of the grain. The transcript data set of 33 421 genes used to define GA metabolism is available as a resource to analyse other physiological processes in germinated grain.


Subject(s)
Gibberellins , Hordeum , Germination , Hordeum/genetics , Seedlings , Sequence Analysis, RNA
18.
Development ; 146(11)2019 06 12.
Article in English | MEDLINE | ID: mdl-31076487

ABSTRACT

Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final 'peduncle' internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering.


Subject(s)
Flowers/growth & development , Homeodomain Proteins/physiology , Hordeum/growth & development , Hordeum/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant/physiology , Homeodomain Proteins/genetics , Meristem/genetics , Meristem/growth & development , Plants, Genetically Modified , Sequence Homology
19.
Sci Rep ; 9(1): 5730, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952890

ABSTRACT

Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides, potentially involved in alleviating pathogen and environmental stresses. These compounds include the cyanogenic glucoside epiheterodendrin. The biosynthetic genes are clustered. Total hydroxynitrile glucoside contents were previously shown to vary from zero to more than 10,000 nmoles g-1 in different barley lines. To elucidate the cause of this variation, the biosynthetic genes from the high-level producer cv. Mentor, the medium-level producer cv. Pallas, and the zero-level producer cv. Emir were investigated. In cv. Emir, a major deletion in the genome spanning most of the hydroxynitrile glucoside biosynthetic gene cluster was identified and explains the complete absence of hydroxynitrile glucosides in this cultivar. The transcript levels of the biosynthetic genes were significantly higher in the high-level producer cv. Mentor compared to the medium-level producer cv. Pallas, indicating transcriptional regulation as a contributor to the variation in hydroxynitrile glucoside levels. A correlation between distinct single nucleotide polymorphism (SNP) patterns in the biosynthetic gene cluster and the hydroxynitrile glucoside levels in 227 barley lines was identified. It is remarkable that in spite of the demonstrated presence of a multitude of SNPs and differences in transcript levels, the ratio between the five hydroxynitrile glucosides is maintained across all the analysed barley lines. This implies the involvement of a stably assembled multienzyme complex.


Subject(s)
Gene Expression , Glucosides/analysis , Hordeum/genetics , Hordeum/chemistry , Polymorphism, Single Nucleotide
20.
Hereditas ; 155: 10, 2018.
Article in English | MEDLINE | ID: mdl-28878591

ABSTRACT

BACKGROUND: Short-culm mutants have been widely used in breeding programs to increase lodging resistance. In barley (Hordeum vulgare L.), several hundreds of short-culm mutants have been isolated over the years. The objective of the present study was to identify the Brachytic1 (Brh1) semi-dwarfing gene and to test its effect on yield and malting quality. RESULTS: Double-haploid lines generated through a cross between a brh1.a mutant and the European elite malting cultivar Quench, showed good malting quality but a decrease in yield. Especially the activities of the starch degrading enzymes ß-amylase and free limit dextrinase were high. A syntenic approach comparing markers in barley to those in rice (Oryza sativa L.), sorghum (Sorghum bicolor Moench) and brachypodium (Brachypodium distachyon P. Beauv) helped us to identify Brh1 as an orthologue of rice D1 encoding the Gα subunit of a heterotrimeric G protein. We demonstrated that Brh1 is allelic to Ari-m. Sixteen different mutant alleles were described at the DNA level. CONCLUSIONS: Mutants in the Brh1 locus are deficient in the Gα subunit of a heterotrimeric G protein, which shows that heterotrimeric G proteins are important regulators of culm length in barley. Mutant alleles do not have any major negative effects on malting quality.


Subject(s)
Heterotrimeric GTP-Binding Proteins/genetics , Hordeum/genetics , Plant Proteins/genetics , Alleles , Hordeum/growth & development , Mutation , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...