Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 298(6): 102014, 2022 06.
Article in English | MEDLINE | ID: mdl-35525272

ABSTRACT

Tau assembly movement from the extracellular to intracellular space may underlie transcellular propagation of neurodegenerative tauopathies. This begins with tau binding to cell surface heparan sulfate proteoglycans, which triggers macropinocytosis. Pathological tau assemblies are proposed then to exit the vesicular compartment as "seeds" for replication in the cytoplasm. Tau uptake is highly efficient, but only ∼1 to 10% of cells that endocytose aggregates exhibit seeding. Consequently, we studied fluorescently tagged full-length (FL) tau fibrils added to native U2OS cells or "biosensor" cells expressing FL tau or repeat domain. FL tau fibrils bound tubulin. Seeds triggered its aggregation in multiple locations simultaneously in the cytoplasm, generally independent of visible exogenous aggregates. Most exogenous tau trafficked to the lysosome, but fluorescence imaging revealed a small percentage that steadily accumulated in the cytosol. Intracellular expression of Gal3-mRuby, which binds intravesicular galactosides and forms puncta upon vesicle rupture, revealed no evidence of vesicle damage following tau exposure, and most seeded cells had no evidence of endolysosome rupture. However, live-cell imaging indicated that cells with pre-existing Gal3-positive puncta were seeded at a slightly higher rate than the general population, suggesting a potential predisposing role for vesicle instability. Clearance of tau seeds occurred rapidly in both vesicular and cytosolic fractions. The lysosome/autophagy inhibitor bafilomycin inhibited vesicular clearance, whereas the proteasome inhibitor MG132 inhibited cytosolic clearance. Tau seeds that enter the cell thus have at least two fates: lysosomal clearance that degrades most tau, and entry into the cytosol, where seeds amplify, and are cleared by the proteasome.


Subject(s)
Cytosol , Lysosomes , Tauopathies , tau Proteins , Alzheimer Disease/physiopathology , Cytosol/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Lysosomes/metabolism , Tauopathies/metabolism , Tauopathies/physiopathology , tau Proteins/metabolism
2.
J Wildl Dis ; 58(3): 575-583, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35512299

ABSTRACT

Free-ranging American black bears (Ursus americanus) often share habitat with humans and domestic animals, predisposing them to anthropogenic conflicts. Rehabilitation under professional care is a management option for orphaned, injured, and/or ill bears. Across several southeastern states, rescued bears are assessed and treated at the University of Tennessee and rehabilitated at Appalachian Bear Rescue (ABR). Records from 1996-2021 showed 337 bears (170 males, 166 females, 1 unknown) from nine states were admitted to ABR. Three bears were admitted twice, resulting in 340 admissions (42 neonates <3 mo old, 206 cubs 3-12 mo, 87 yearlings 1-2 yr, and 5 adults >2 yr). Bears presented as orphans (58%), malnourished (24%), injured or ill (12%), or confiscated/other (6%). Individuals were returned to the wild (85%); died or were euthanized (12%); or were placed into professional care (3%). Of released bears, 195 had complete medical records available for evaluation; 31% were healthy upon intake while the remaining were treated successfully for malnutrition and internal parasites (49%), orthopedic (9%) and soft tissue injuries (5%), or other diseases (5%). Causes of death determined during necropsies performed (n=30) were classified as trauma (50%), developmental (13%), undetermined (13%), malnutrition (13%), infectious or inflammatory (7%), and toxicosis (3%). Despite the lack of maternal care and high prevalence of malnutrition and trauma, most bears recovered to release with appropriate husbandry and medical care. This study provides a foundation for research to further improve care of rehabilitating black bears.


Subject(s)
Malnutrition , Ursidae , Animals , Appalachian Region , Female , Humans , Male , Malnutrition/veterinary , Prevalence , Tennessee/epidemiology , Ursidae/parasitology
3.
Neurosci Lett ; 627: 168-77, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27276652

ABSTRACT

In the adult retina, we have previously shown that Nogo-A was highly expressed in Müller glia. However, the role of Nogo-A in the glial cell physiology is not clear. In this study, we investigated the possible influence that Nogo-A may exert on other polarized molecules in Müller cells, in particular inwardly rectifying potassium channel 4.1 (Kir4.1) and aquaporin 4 (AQP4) that respectively control potassium and water exchange in glial cells. Our results showed that adenovirus-mediated Nogo-A overexpression with AdNogo-A increased the immunofluorescent signal of Kir4.1 in rat Müller cell line 1 (rMC-1) cells but did not change its expression level by Western blotting. In vivo, AdNogo-A induced ectopic Kir4.1 immunoreactivity throughout the radial processes of Müller cells compared with AdLacZ control virus. Surprisingly, AdNogo-A did not modify the distribution of Dp71 and AQP4 that are common binding partners for Kir4.1 in the dystrophin-associated protein (DAP) complex anchored at the plasma membrane of Müller glia. Immunoprecipitation experiments revealed molecular interactions between Nogo-A and Kir4.1. In Nogo-A KO mouse retinae, the distribution of Kir4.1 was not different from that observed in Wild-Type (WT) animals. In addition, potassium conductance did not change in freshly dissociated Nogo-A KO Müller glia compared with WT cells. In summary, the increase of Nogo-A expression can selectively influence the distribution of Kir4.1 in glia but is not essential for Kir4.1-mediated potassium conductance at the plasma membrane in physiological conditions. Nogo-A-Kir4.1 interactions may, however, contribute to pathological processes taking place in the retina, for instance, after ischemia.


Subject(s)
Aquaporin 4/metabolism , Ependymoglial Cells/metabolism , Nogo Proteins/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Adenoviridae/physiology , Animals , Cells, Cultured , Dystrophin/metabolism , Genetic Vectors , Male , Mice , Mice, Inbred C57BL , Potassium/metabolism , Rats , Up-Regulation
4.
mBio ; 5(3): e01178-14, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24902122

ABSTRACT

UNLABELLED: Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. IMPORTANCE: Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response.


Subject(s)
Bacterial Proteins/immunology , Chancroid/enzymology , Chancroid/immunology , Haemophilus ducreyi/immunology , Phagocytosis , src-Family Kinases/immunology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , CSK Tyrosine-Protein Kinase , Chancroid/microbiology , Enzyme Activation , Haemophilus ducreyi/chemistry , Haemophilus ducreyi/genetics , Host-Pathogen Interactions , Humans , Lectins/chemistry , Lectins/genetics , Lectins/immunology , Protein Structure, Tertiary , src-Family Kinases/chemistry , src-Family Kinases/genetics
5.
PLoS Biol ; 12(1): e1001763, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24453941

ABSTRACT

Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A(-/-) mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity.


Subject(s)
Hippocampus/metabolism , Motor Cortex/metabolism , Myelin Proteins/genetics , Neuronal Plasticity/genetics , Receptors, Lysosphingolipid/genetics , Animals , Cell Proliferation , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Gene Expression Regulation , Hippocampus/cytology , Long-Term Potentiation , Lysophospholipids/metabolism , Mice , Mice, Knockout , Motor Cortex/cytology , Myelin Proteins/deficiency , Myelin Sheath/genetics , Myelin Sheath/metabolism , Neurites/metabolism , Nogo Proteins , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors , Synapses/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
6.
Infect Immun ; 81(11): 4160-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23980107

ABSTRACT

Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, we show that this secretion system is also regulated by the small nucleoid-associated protein Fis. Inactivation of the H. ducreyi fis gene resulted in a reduction in expression of both the H. ducreyi LspB and LspA2 proteins. DNA microarray experiments showed that a H. ducreyi fis deletion mutant exhibited altered expression levels of genes encoding other important H. ducreyi virulence factors, including DsrA and Flp1, suggesting a possible global role for Fis in the control of virulence in this obligate human pathogen. While the H. ducreyi Fis protein has a high degree of sequence and structural similarity to the Fis proteins of other bacteria, its temporal pattern of expression was very different from that of enterobacterial Fis proteins. The use of a lacZ-based transcriptional reporter provided evidence which indicated that the H. ducreyi Fis homolog is a positive regulator of gyrB, a gene that is negatively regulated by Fis in enteric bacteria. Taken together, the Fis protein expression data and the observed regulatory effects of Fis in H. ducreyi suggest that this small DNA binding protein has a regulatory role in H. ducreyi which may differ in substantial ways from that of other Fis proteins.


Subject(s)
Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Proteins/biosynthesis , Factor For Inversion Stimulation Protein/metabolism , Gene Expression Regulation, Bacterial , Haemophilus ducreyi/genetics , Operon , Artificial Gene Fusion , Factor For Inversion Stimulation Protein/genetics , Gene Deletion , Gene Expression Profiling , Genes, Reporter , Lectins/biosynthesis , Microarray Analysis , Transcription, Genetic , Up-Regulation , Virulence Factors/metabolism , beta-Galactosidase/analysis , beta-Galactosidase/genetics
7.
J Infect Dis ; 203(12): 1859-65, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21606544

ABSTRACT

Haemophilus ducreyi 35000HP contains a homolog of the CpxRA 2-component signal transduction system, which controls the cell envelope stress response system in other gram-negative bacteria and regulates some important H. ducreyi virulence factors. A H. ducreyi cpxR mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule formation rate in 5 volunteers was 33% (95% confidence interval [CI], 1.3%-65.3%) at 15 parent sites and 40% (95% CI, 18.1%-61.9%) at 15 mutant sites (P = .35). Thus, the cpxR mutant was not attenuated for virulence. Inactivation of the H. ducreyi cpxR gene did not reduce the ability of this mutant to express certain proven virulence factors, including the DsrA serum resistance protein and the LspA2 protein, which inhibits phagocytosis. These results expand our understanding of the involvement of the CpxRA system in regulating virulence expression in H. ducreyi.


Subject(s)
Bacterial Proteins/genetics , Chancroid/microbiology , Haemophilus ducreyi/genetics , Haemophilus ducreyi/pathogenicity , Blotting, Western , Female , Humans , Male , Middle Aged , Phagocytosis , Sequence Deletion , Virulence Factors/genetics
8.
J Cell Biol ; 188(2): 271-85, 2010 Jan 25.
Article in English | MEDLINE | ID: mdl-20083601

ABSTRACT

Nogo-A is one of the most potent myelin-associated inhibitors for axonal growth, regeneration, and plasticity in the adult central nervous system. The Nogo-A-specific fragment NogoDelta20 induces growth cone collapse, and inhibits neurite outgrowth and cell spreading by activating RhoA. Here, we show that NogoDelta20 is internalized into neuronal cells by a Pincher- and rac-dependent, but clathrin- and dynamin-independent, mechanism. Pincher-mediated macroendocytosis results in the formation of NogoDelta20-containing signalosomes that direct RhoA activation and growth cone collapse. In compartmentalized chamber cultures, NogoDelta20 is endocytosed into neurites and retrogradely transported to the cell bodies of dorsal root ganglion neurons, triggering RhoA activation en route and decreasing phosphorylated cAMP response element binding levels in cell bodies. Thus, Pincher-dependent macroendocytosis leads to the formation of Nogo-A signaling endosomes, which act both within growth cones and after retrograde transport in the cell body to negatively regulate the neuronal growth program.


Subject(s)
Endosomes/metabolism , Ganglia, Spinal/embryology , Ganglia, Spinal/metabolism , Growth Cones/metabolism , Myelin Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Axonal Transport/physiology , Cell Differentiation/physiology , Cells, Cultured , Cyclic AMP/metabolism , Diffusion Chambers, Culture , Endocytosis/physiology , Endosomes/ultrastructure , Ganglia, Spinal/ultrastructure , Growth Cones/ultrastructure , Myelin Proteins/genetics , Nerve Tissue Proteins/genetics , Neurogenesis/physiology , Nogo Proteins , Organ Culture Techniques , PC12 Cells , Phosphorylation , Rats , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/ultrastructure , Signal Transduction/physiology , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
9.
Brain Cell Biol ; 35(2-3): 137-56, 2006 Jun.
Article in English | MEDLINE | ID: mdl-17957480

ABSTRACT

Formation and maintenance of a neuronal network is based on a balance between plasticity and stability of synaptic connections. Several molecules have been found to regulate the maintenance of excitatory synapses but nothing is known about the molecular mechanisms involved in synaptic stabilization versus disassembly at inhibitory synapses. Here, we demonstrate that Nogo-A, which is well known to be present in myelin and inhibit growth in the adult CNS, is present in inhibitory presynaptic terminals in cerebellar Purkinje cells at the time of Purkinje cell-Deep Cerebellar Nuclei (DCN) inhibitory synapse formation and is then downregulated during synapse maturation. We addressed the role of neuronal Nogo-A in synapse maturation by generating several mouse lines overexpressing Nogo-A, starting at postnatal ages and throughout adult life, specifically in cerebellar Purkinje cells and their terminals. The overexpression of Nogo-A induced a progressive disassembly, retraction and loss of the inhibitory Purkinje cell terminals. This led to deficits in motor learning and coordination in the transgenic mice. Prior to synapse disassembly, the overexpression of neuronal Nogo-A led to the downregulation of the synaptic scaffold proteins spectrin, spectrin-E and beta-catenin in the postsynaptic neurons. Our data suggest that neuronal Nogo-A might play a role in the maintenance of inhibitory synapses by modulating the expression of synaptic anchoring molecules.


Subject(s)
Cell Differentiation/physiology , Cerebellum/metabolism , Myelin Proteins/metabolism , Neural Pathways/metabolism , Presynaptic Terminals/metabolism , Purkinje Cells/metabolism , Animals , Animals, Newborn , Cerebellar Nuclei/growth & development , Cerebellar Nuclei/metabolism , Cerebellar Nuclei/ultrastructure , Cerebellum/growth & development , Cerebellum/ultrastructure , Down-Regulation/physiology , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Immunoelectron , Movement Disorders/genetics , Movement Disorders/metabolism , Movement Disorders/physiopathology , Myelin Proteins/genetics , Neural Inhibition/physiology , Neural Pathways/growth & development , Neural Pathways/ultrastructure , Nogo Proteins , Presynaptic Terminals/ultrastructure , Purkinje Cells/ultrastructure , Rats , Spectrin/metabolism , Synaptic Membranes/metabolism , Synaptic Membranes/ultrastructure , Synaptic Transmission/physiology , beta Catenin/metabolism
10.
Virology ; 337(1): 18-29, 2005 Jun 20.
Article in English | MEDLINE | ID: mdl-15914217

ABSTRACT

During poliovirus infection, anterograde traffic between the endoplasmic reticulum and the Golgi is inhibited due to the action of 3A, an 87 amino acid viral protein. The ability of poliovirus protein 3A to inhibit ER-to-Golgi traffic is not required for virus growth. Instead, we have suggested that the inhibition of host protein secretion, shown to reduce the secretion of interferon-beta, IL-6, and IL-8 and the expression of both newly synthesized MHC class I and TNF receptor in the plasma membrane of infected cells, affects growth in host organisms. To determine whether the ability of poliovirus 3A to inhibit ER-to-Golgi traffic is conserved, the ability of 3A proteins from several picornaviruses, including human rhinovirus 14, foot-and-mouth disease virus, enterovirus 71, hepatitis A, and Theiler's virus, was tested. Only the 3A proteins from another poliovirus, Sabin 3, and closely related coxsackievirus B3 inhibited ER-to-Golgi traffic as effectively as the 3A protein from poliovirus Mahoney type 1. Site-directed mutagenesis based on these findings and the three-dimensional structure of the amino-terminal domain of poliovirus 3A protein revealed that residues in the unstructured amino terminus of 3A are critical for the inhibition of host protein secretion.


Subject(s)
Golgi Apparatus/drug effects , Poliovirus/physiology , Viral Core Proteins/pharmacology , Amino Acid Sequence , Animals , COS Cells , Golgi Apparatus/metabolism , Molecular Sequence Data , Poliovirus/genetics , Protein Transport , Proteins/metabolism
11.
J Biol Chem ; 280(13): 12494-502, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15640160

ABSTRACT

Nogo-A, -B, and -C are generated from the Nogo/RTN-4 gene and share a highly conserved C-terminal domain. They lack an N-terminal signal sequence and are predominantly localized to the endoplasmic reticulum (ER). We found the N terminus of endogenous Nogo-A exposed on the surface of fibroblasts, DRG neurons, and myoblasts. Surface-expressed Nogo-A was also present on presynaptic terminals of the neuromuscular junction and on DRG neurons in vivo. Surface biotinylations confirmed the presence of all Nogo isoforms on the surface. To search for proteins that interact with Nogo-A and suggest a function for the large intracellular pool of Nogo-A, immunoprecipitations were performed. Surprisingly, the most predominant proteins that interact with Nogo-A are Nogo-B and Nogo-C as seen with radiolabeled lysates and as confirmed by Western blotting in multiple cell lines. Nogo-A, -B, and -C share a 180-amino acid C-terminal domain with two highly conserved hydrophobic stretches that could form a channel or transporter in the ER and/or on the cell surface.


Subject(s)
Myelin Proteins/biosynthesis , Myelin Proteins/physiology , 3T3 Cells , Animals , Biotinylation , Blotting, Western , CHO Cells , Cell Line , Cell Membrane/metabolism , Chromatography, Gel , Cricetinae , Fibroblasts/metabolism , Ganglia, Spinal/metabolism , Immunohistochemistry , Immunoprecipitation , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Myelin Proteins/chemistry , Myoblasts/metabolism , NIH 3T3 Cells , Neurons/metabolism , Nogo Proteins , Oligodendroglia/metabolism , PC12 Cells , Protein Binding , Protein Isoforms , Protein Structure, Tertiary , Rats , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...