Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(5): e0251305, 2021.
Article in English | MEDLINE | ID: mdl-33983990

ABSTRACT

Self-compatibility has become the primary objective of most prune (Prunus domestica) breeding programs in order to avoid the problems related to the gametophytic self-incompatibility (GSI) system present in this crop. GSI is typically under the control of a specific locus., known as the S-locus., which contains at least two genes. The first gene encodes glycoproteins with RNase activity in the pistils., and the second is an SFB gene expressed in the pollen. There is limited information on genetics of SI/SC in prune and in comparison., with other Prunus species, cloning., sequencing and discovery of different S-alleles is very scarce. Clear information about S-alleles can be used for molecular identification and characterization of the S-haplotypes. We determined the S-alleles of 36 cultivars and selections using primers that revealed 17 new alleles. In addition, our study describes for the first time the association and design of a molecular marker for self-compatibility in P. domestica. Our phylogenetic tree showed that the S-alleles are spread across the phylogeny, suggesting that like previous alleles detected in the Rosaceae., they were of trans-specific origin. We provide for the first time 3D models for the P. domestica SI RNase alleles as well as in other Prunus species, including P. salicina (Japanese plum), P. avium (cherry), P. armeniaca (apricot), P. cerasifera and P. spinosa.


Subject(s)
Prunus domestica/genetics , Self-Incompatibility in Flowering Plants/genetics , Agriculture/methods , Alleles , Amino Acid Sequence/genetics , Genes, Plant/genetics , Germ Cells, Plant/metabolism , Haplotypes/genetics , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Ribonucleases/ultrastructure
2.
Ecol Evol ; 10(19): 10619-10632, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33072284

ABSTRACT

Uncovering the genetic basis of local adaptation is a major goal of evolutionary biology and conservation science alike. In an era of climate change, an understanding of how environmental factors shape adaptive diversity is crucial to predicting species response and directing management. Here, we investigate patterns of genomic variation in giant sequoia, an iconic and ecologically important tree species, using 1,364 bi-allelic single nucleotide polymorphisms (SNPs). We use an F ST outlier test and two genotype-environment association methods, latent factor mixed models (LFMMs) and redundancy analysis (RDA), to detect complex signatures of local adaptation. Results indicate 79 genomic regions of potential adaptive importance, with limited overlap between the detection methods. Of the 58 loci detected by LFMM, 51 showed strong correlations to a precipitation-driven composite variable and seven to a temperature-related variable. RDA revealed 24 outlier loci with association to climate variables, all of which showed strongest relationship to summer precipitation. Nine candidate loci were indicated by two methods. After correcting for geographic distance, RDA models using climate predictors accounted for 49% of the explained variance and showed significant correlations between SNPs and climatic factors. Here, we present evidence of local adaptation in giant sequoia along gradients of precipitation and provide a first step toward identifying genomic regions of adaptive significance. The results of this study will provide information to guide management strategies that seek to maximize adaptive potential in the face of climate change.

3.
Am J Bot ; 107(1): 45-55, 2020 01.
Article in English | MEDLINE | ID: mdl-31883111

ABSTRACT

PREMISE: Patterns of genetic structure across a species' range reflect the long-term interplay between genetic drift, gene flow, and selection. Given the importance of gene flow in preventing the loss of diversity through genetic drift among spatially isolated populations, understanding the dynamics of gene flow and the factors that influence connectivity across a species' range is a major goal for conservation of genetic diversity. Here we present a detailed look at gene flow dynamics of Sequoiadendron giganteum, a paleoendemic tree species that will likely face numerous threats due to climate change. METHODS: We used microsatellite markers to examine nineteen populations of S. giganteum for patterns of genetic structure and to estimate admixture and rates of gene flow between eight population pairs. Also, we used Generalized Dissimilarity Models to elucidate landscape factors that shape genetic differentiation among populations. RESULTS: We found minimal gene flow between adjacent groves in the northern disjunct range. In most of the southern portion of the range, groves showed a signal of connectivity which degrades to isolation in the extreme south. Geographic distance was the most important predictor of genetic dissimilarity across the range, with environmental conditions related to precipitation and temperature explaining a small, but significant, portion of the genetic variance. CONCLUSIONS: Due to their isolation and unique genetic composition, northern populations of S. giganteum should be considered a high conservation priority. In this region, we suggest germplasm conservation as well as restoration planting to enhance genetic diversity.


Subject(s)
Gene Flow , Sequoiadendron , Ecosystem , Genetic Variation , Genetics, Population , Microsatellite Repeats
4.
Phytopathology ; 109(5): 760-769, 2019 May.
Article in English | MEDLINE | ID: mdl-30303771

ABSTRACT

Invasive forest pathogens can harm cultural, economic, and ecological resources. Here, we demonstrate the potential of endemic tree pathogen resistance in forest disease management using Phytophthora ramorum, cause of sudden oak death, in the context of management of tanoak (Notholithocarpus densiflorus), an ecologically unique and highly valued tree within Native American communities of northern California and southern Oregon in the United States. We surveyed resistance to P. ramorum on the Hoopa Valley Indian Reservation and Yurok Indian Reservation in a set of study sites with variable management intensities. Variation in resistance was found at all sites with similar mean and variation across stands, and resistance tended to have a random spatial distribution within stands but was not associated with previous stand management (thinning or prescribed fire) or structural characteristics such as tree density, basal area, or pairwise relatedness among study trees. These results did not suggest host, genetic, management, or environment interactions that could be easily leveraged into treatments to increase the prevalence of resistant trees. We applied epidemiological models to assess the potential application of endemic resistance in this system and to examine our assumption that in planta differences in lesion size-our measure of resistance-reflect linkages between mortality and transmission (resistance) versus reduced mortality with no change in transmission (tolerance). This assumption strongly influenced infection dynamics but changes in host populations-our conservation focus-was dependent on community-level variation in transmission. For P. ramorum, slowing mortality rates (whether by resistance or tolerance) conserves host resources when a second source of inoculum is present; these results are likely generalizable to pathogens with a broader host range. However, when the focal host is the sole source of inoculum, increasing tolerant individuals led to the greatest stand-level pathogen accumulation in our model. When seeking to use variation in mortality rates to affect conservation strategies, it is important to understand how these traits are linked with transmission because tolerance will be more useful for management in mixed-host stands that are already invaded, compared with single-host stands with low or no pathogen presence, where resistance will have the greatest conservation benefits.


Subject(s)
Fagaceae/microbiology , Phytophthora/pathogenicity , Plant Diseases/microbiology , California , Conservation of Natural Resources , Disease Resistance , Oregon , Trees/microbiology
5.
Ecol Evol ; 6(10): 3342-55, 2016 May.
Article in English | MEDLINE | ID: mdl-27252835

ABSTRACT

Mediterranean ecosystems comprise a high proportion of endemic taxa whose response to climate change will depend on their evolutionary origins. In the California flora, relatively little attention has been given to the evolutionary history of paleoendemics from a molecular perspective, yet they number among some of the world's most iconic plant species. Here, we address questions of demographic change in Sequoiadendron giganteum (giant sequoia) that is restricted to a narrow belt of groves in the Sierra Nevada Mountains. We ask whether the current distribution is a result of northward colonization since the last glacial maximum (LGM), restriction of a broader range in the recent past (LGM) or independent colonizations in the deeper past. Genetic diversity at eleven microsatellite loci decreased with increasing latitude, but partial regressions suggested this was a function of smaller population sizes in the north. Disjunct populations north of the Kings River were divergent from those south of the Kings River that formed a single cluster in Bayesian assignment tests. Demographic inferences supported a demographic contraction just prior to the LGM as the most likely scenario for the current disjunct range of the species. This contraction appeared to be superimposed upon a long-term decline in giant sequoia over the last 2 million years, associated with increasing aridity due to the Mediterranean climate. Overall, low genetic diversity, together with competition in an environment to which giant sequoia is likely already poorly adapted, will pose major constraints on its success in the face of increasing aridity.

6.
Appl Plant Sci ; 3(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-25798341

ABSTRACT

PREMISE OF THE STUDY: Identifying clonal lineages in asexually reproducing plants using microsatellite markers is complicated by the possibility of nonidentical genotypes from the same clonal lineage due to somatic mutations, null alleles, and scoring errors. We developed and tested a clonal identification protocol that is robust to these issues for the asexually reproducing hexaploid tree species coast redwood (Sequoia sempervirens). METHODS: Microsatellite data from four previously published and two newly developed primers were scored using a modified protocol, and clones were identified using Bruvo genetic distances. The effectiveness of this clonal identification protocol was assessed using simulations and by genotyping a test set of paired samples of different tissue types from the same trees. RESULTS: Data from simulations showed that our protocol allowed us to accurately identify clonal lineages. Multiple test samples from the same trees were identified correctly, although certain tissue type pairs had larger genetic distances on average. DISCUSSION: The methods described in this paper will allow for the accurate identification of coast redwood clones, facilitating future studies of the reproductive ecology of this species. The techniques used in this paper can be applied to studies of other clonal organisms as well.

7.
PLoS One ; 9(4): e93358, 2014.
Article in English | MEDLINE | ID: mdl-24699389

ABSTRACT

Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans.


Subject(s)
Avicennia/genetics , Genetic Variation/genetics , Rhizophoraceae/genetics , California , Climate , Climate Change , Ecosystem , Gene Flow/genetics , Genetics, Population/methods , Geography , Mexico , Microsatellite Repeats/genetics , Plant Leaves/genetics
8.
J Hered ; 104(1): 105-14, 2013.
Article in English | MEDLINE | ID: mdl-23109719

ABSTRACT

The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species' restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental conditions can be expected to influence levels of clonal spread and SGS, particularly in the case of disturbance regimes such as fire. Here, we characterize fine-scale genetic structure and clonal spread in tanoak from drier upland sites and more mesic lowland woodlands. Clonal spread was a significant mode of stand development, but spread was limited on average to about 5-6 m. Gene dispersal was decomposed into clonal and sexual components. The latter varied according to whether it was estimated from all ramets with the clonal component removed or for a single ramet per genet. We used the difference in these 2 estimates of gene dispersal as a measure of the effect of clonality on effective population size in this species. Although upland sites had a greater number of ramets per genet, most of the other indices computed were not significantly different. However, they tended to show greater heterozygote excess and shorter gene dispersal distances than the lowland sites. The average distance among inferred sibships on upland sites was approximately at the scale of maximum clonal range. This was not the case on lowland sites, where sibs were more dispersed. We recommend minimum distances among seed trees to avoid selecting clones and to maximize genetic diversity for restoration.


Subject(s)
Conservation of Natural Resources/methods , Demography , Ecosystem , Fagaceae/growth & development , Fagaceae/genetics , Genetic Variation , Genetics, Population , California , DNA Primers/genetics , Geography , Microsatellite Repeats/genetics , Models, Genetic , Polymerase Chain Reaction , Population Density , Sequence Analysis, DNA
9.
Mol Ecol Resour ; 11 Suppl 1: 9-19, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21429159

ABSTRACT

Although single-nucleotide polymorphisms (SNPs) have become the marker of choice in the field of human genetics, these markers are only slowly emerging in ecological, evolutionary and conservation genetic analyses of nonmodel species. This is partly because of difficulties associated with the discovery and characterization of SNP markers. Herein, we adopted a simple straightforward approach to identifying SNPs, based on screening of a random genomic library. In total, we identified 768 SNPs in the ringed seal, Pusa hispida hispida, in samples from Greenland and Svalbard. Using three seal samples, SNPs were discovered at a rate of one SNP per 402 bp, whereas re-sequencing of 96 seals increased the density to one SNP per 29 bp. Although applicable to any species of interest, the approach is especially well suited for SNP discovery in nonmodel organisms and is easily implemented in any standard genetics laboratory, circumventing the need for prior genomic data and use of next-generation sequencing facilities.


Subject(s)
Polymorphism, Single Nucleotide , Seals, Earless/genetics , Animals , Cloning, Molecular , Gene Frequency , Genomics/methods , Genotype , Sequence Analysis, DNA
10.
Am J Bot ; 96(12): 2224-33, 2009 Dec.
Article in English | MEDLINE | ID: mdl-21622338

ABSTRACT

Knowledge of population genetic structure of tanoak (Lithocarpus densiflorus) is of interest to pathologists seeking natural variation in resistance to sudden oak death disease, to resource managers who need indications of conservation priorities in this species now threatened by the introduced pathogen (Phytophthora ramorum), and to biologists with interests in demographic processes that have shaped plant populations. We investigated population genetic structure using nuclear and chloroplast DNA (cpDNA) and inferred the effects of past population demographic processes and contemporary gene flow. Our cpDNA results revealed a strong pattern of differentiation of four regional groups (coastal California, southern Oregon, Klamath mountains, and Sierra Nevada). The chloroplast haplotype phylogeny suggests relatively deep divergence of Sierra Nevada and Klamath populations from those of coastal California and southern Oregon. A widespread coastal California haplotype may have resulted from multiple refugial sites during the Last Glacial Maximum or from rapid recolonization from few refugia. Analysis of nuclear microsatellites suggests two major groups: (1) central coastal California and (2) Sierra Nevada/Klamath/southern Oregon and an area of admixture in north coastal California. The low level of nuclear differentiation is likely to be due to pollen gene flow among populations during postglacial range expansion.

11.
New Phytol ; 179(2): 505-514, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19086294

ABSTRACT

Variations in synchronicity between colonization rate by the pathogen and host phenology may account for unexplained spatial distribution of canker disease. The hypothesis that synchronous pathogenicity and host development are necessary for incidence of sudden oak death disease was tested by correlating seasonal variations in host cambial phenology and response to inoculation with Phytophthora ramorum. Response to infection was estimated by inoculating branch cuttings from coast live oak (Quercus agrifolia) trees at nine dates through a full annual cycle in 2003-2004. Host phenology was estimated from measurements of bud burst and cambial activity in spring 2006. Lesions were largest in the spring soon after the cambium resumed activity. A moderate genetic component to lesion size was detected. Variation among trees in date of largest lesions correlated with variation in timing of bud burst and cambial phenology. The data support the hypothesis that active host cambial tissue is a necessary requisite for successful infection with the pathogen that causes sudden oak death canker disease. Genetic variation in host phenology will buffer coast live oak against epidemics of this disease.


Subject(s)
Phytophthora/physiology , Plant Diseases/microbiology , Quercus/microbiology , Seasons , Time Factors
12.
Mol Ecol ; 17(11): 2680-90, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18466233

ABSTRACT

Regional distribution of genetic diversity in widespread species may be influenced by hybridization with locally restricted, closely related species. Previous studies have shown that Central American East Pacific populations of the wide-ranged Avicennia germinans, the black mangrove, harbour higher genetic diversity than the rest of its range. Genetic diversity in this region might be enhanced by introgression with the locally restricted Avicennia bicolor. We tested the hypotheses of ancient hybridization using phylogenetic analysis of the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA and intergenic chloroplast DNA; we also tested for current hybridization by population level analysis of nuclear microsatellites. Our results unveiled ancient ITS introgression between a northern Pacific Central American A. germinans lineage and A. bicolor. However, microsatellite data revealed contemporary isolation between the two species. Polymorphic ITS sequences from Costa Rica and Panama are consistent with a zone of admixture between the introgressant ITS A. germinans lineage and a southern Central American lineage of A. germinans. Interspecific introgression influenced lineage diversity and divergence at the nuclear ribosomal DNA; intraspecific population differentiation and secondary contact are more likely to have enhanced regional genetic diversity in Pacific Central American populations of the widespread A. germinans.


Subject(s)
Avicennia/genetics , Genetic Variation , Base Sequence , Costa Rica , DNA, Chloroplast/genetics , DNA, Intergenic/genetics , DNA, Ribosomal/genetics , Mexico , Microsatellite Repeats/genetics , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
13.
Mol Ecol Resour ; 8(4): 851-3, 2008 Jul.
Article in English | MEDLINE | ID: mdl-21585910

ABSTRACT

We present 10 microsatellite markers for the buttonwood mangrove, Conocarpus erectus, a wide-range mangrove associate species. Polymorphism was assessed among individuals from six different populations along the Pacific Coast of Mexico and Costa Rica, as well as in two individuals from the Yucatan Peninsula in the Atlantic. The number of alleles detected in the Pacific ranged from two to five. All loci amplified in the Yucatan samples and seven loci revealed a unique Atlantic allele. These markers will be useful for studies in the conservation of the species and to study the basic biology of C. erectus.

14.
Evolution ; 61(4): 958-71, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17439624

ABSTRACT

Two issues that have captured the attention of tropical plant evolutionary biologists in recent years are the relative role of long distance dispersal (LDD) over vicariance in determining plant distributions and debate about the extent that Quaternary climatic changes affected tropical species. Propagules of some mangrove species are assumed to be capable of LDD due to their ability to float and survive for long periods of time in salt water. Mangrove species responded to glaciations with a contraction of their range. Thus, widespread mangrove species are an ideal system to study LDD and recolonization in the tropics. We present phylogenetic and phylogeographic analyses based on internal transcribed spacers region (ITS) sequences, chloroplast DNA (cpDNA), and amplified fragment length polymorphisms (AFLPs) of genomic DNA that demonstrate recent LDD across the Atlantic, rejecting the hypothesis of vicariance for the widespread distribution of the black mangrove (Avicennia germinans). Northern latitude populations likely became extinct during the late Quaternary due to frosts and aridification; these locations were recolonized afterward from southern populations. In some low latitude regions populations went extinct or were drastically reduced during the Quaternary because of lack of suitable habitat as sea levels changed. Our analyses show that low latitude Pacific populations of A. germinans harbor more diversity and reveal deeper divergence than Atlantic populations. Implications for our understanding of phylogeography of tropical species are discussed.


Subject(s)
Avicennia/genetics , Avicennia/physiology , Climate , Demography , Ecosystem , Genetic Variation , Phylogeny , Africa, Western , Base Sequence , Caribbean Region , DNA, Chloroplast/genetics , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Geography , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Population Dynamics , Sequence Analysis, DNA , Tropical Climate
15.
Mol Ecol ; 16(4): 723-36, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17284207

ABSTRACT

European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum.


Subject(s)
Climate , Demography , Genetic Variation , Genetics, Population , Pinus/genetics , Bayes Theorem , Cluster Analysis , DNA, Chloroplast/genetics , Europe , Evolution, Molecular , Geography , Haplotypes/genetics , Microsatellite Repeats/genetics , Models, Genetic , Mutation/genetics , Population Dynamics
16.
New Phytol ; 165(1): 203-14, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15720634

ABSTRACT

California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.


Subject(s)
Genetic Variation , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/parasitology , Quercus/genetics , Quercus/parasitology , California , Genetic Markers , Genetic Predisposition to Disease , Phylogeny , Polymorphism, Genetic , Seasons
17.
Evolution ; 58(2): 261-9, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15068344

ABSTRACT

The four western North American red oak species (Quercus wislizeni, Q. parvula, Q. agrifolia, and Q. kelloggii) are known to produce hybrid products in all interspecific combinations. However, it is unknown whether hybrids are transitory resulting from interspecific gene flow or whether they are maintained through extrinsic selection. Here, we examine cryptic hybrid structure in Q. wislizeni through a broad region including contact and isolation from three other western North American red oaks using amplified fragment length polymorphism molecular markers. All four species were simultaneously detected in the genetic background of individuals morphologically assigned to Q. wislizeni, although the contribution of Q. kelloggii was minor. In some cases, introgression was detected well outside the region of sympatry with one of the parental species. Molecular structure at the individual level indicated this was due to long-distance pollen dispersal and not to local extinction of parental species. Species admixture proportions were correlated with climatic variables and greater proportions of Q. agrifolia and Q. parvula were present in the genetic background of Q. wislizeni in sites with cooler and more humid summers, corresponding with habitat preferences of the parental species. Partial Mantel tests indicated that climate was more important than distance from pollen source in this association. Despite high levels of introgression, species integrity was maintained in some populations in close proximity to the other species, providing further support to environmental selection in determining population genetic structure. Thus, the contribution of species mixtures to population genetic structure varies across the landscape according to availability of pollen, but more importantly to varying environmental selection pressures that produce a complex pattern of hybrid and pure gene pools.


Subject(s)
Demography , Genetics, Population , Hybridization, Genetic , Quercus/physiology , Selection, Genetic , California , Climate , Geography , Pollen/physiology , Polymorphism, Restriction Fragment Length
18.
Am J Bot ; 91(7): 1140-6, 2004 Jul.
Article in English | MEDLINE | ID: mdl-21653469

ABSTRACT

The ecology and evolutionary potential of coast redwood (Sequoia sempervirens) is significantly influenced by the important role clonal spread plays in its reproduction and site persistence. In nine second-growth stands, amplified fragment length polymorphisms (AFLPs) were used to identify redwood clonal architecture. Clones (multistem genets) dominated sites by representing an average of 70% of stems measured, ranging in size from two to 20 stems. As a result, a relatively small number of genets can monopolize a disproportionate amount of site resources, are more likely to persist over time, and have greater on-site genetic representation. Clones were not limited to fairy-ring structures, but consisted of a wide range of shapes including concentric rings, ring chains, disjunct, and linear structures. Between-ramet distances of up to 40 m were measured, indicating that clonal reproduction is not limited to basal stump resprouting. Clonal structure in second-growth stands was similar to earlier reports from old growth, emphasizing the importance of site persistence and long-term, gradual site development. Smaller ramet numbers per genet in old growth is probably due to local within-genet self thinning. Management and conservation of redwoods will benefit from a better understanding of the dynamics and structure of clonal spread in these forests.

19.
Theor Appl Genet ; 107(5): 884-92, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12761621

ABSTRACT

A recent epidemic of Phytopthora (Sudden Oak Death) in coastal woodlands of California is causing severe mortality in some oak species belonging to the red oak (Lobatae) group. To predict the risks of spread of this disease, an understanding of the relationships among California's red oak species and of their population genetic structure is needed. We focus here on relationships among the four species of red oak. Whereas morphological distinction of Quercus wislizeni and Quercus parvula can pose problems, Quercus kelloggii and Quercus agrifolia in pure forms are easily distinguishable from one another and from Q. wislizeni and Q. parvula in the field. However, hybrids among all species combinations are known to occur in nature and these can confound data from ecological studies. Our results revealed greatest differentiation of the deciduous Q. kelloggii, with only weak AFLP fragment differentiation of the three remaining evergreen species. The molecular data suggest a closer affinity of Q. agrifolia with Q. wislizeni and Q. parvula contrary to earlier suggestions that its origins are likely to have been with northern deciduous oaks probably through a common ancestor with Q. kelloggii. Interior and coastal populations of Q. wislizeni separated in dendrograms based on phenetic and genetic distances suggesting probable isolation in different glacial refugia. The position of Q. parvula remains ambiguous, having a closer affinity with interior populations of Q. wislizeni and with Q. agrifolia, than with coastal populations of Q. wislizeni. Mean population differentiation in Q. wislizeni was 0.18, which is somewhat higher than the average for other oak species, suggesting that range fragmentation has occurred in the past, resulting in a metapopulation structure. Our results provide evidence that introgression among these species may be causing reticulation, further confounding species separation. Whereas Phytopthora has been reported on Q. agrifolia, Q. parvula and Q. kelloggii, it has not yet been detected in natural populations of Q. wislizeni. The species relationships that our molecular data show suggest that this is more likely a result of escape due to ecological tolerances than to genetic differences.


Subject(s)
Genetic Variation , Genetics, Population , Quercus/genetics , Trees/genetics , California , Evolution, Molecular , Genetic Markers , Phylogeny , Quercus/classification , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...