Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Indian J Crit Care Med ; 26(1): 85-93, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35110850

ABSTRACT

BACKGROUND: Tracheostomy is integral in long-term intensive care of coronavirus disease-2019 (COVID-19) patients. There is a paucity of studies on weaning outcomes and mortality after tracheostomy in COVID-19 in Indian scenario. MATERIALS AND METHODS: We conducted a retrospective, single-center, observational study of severe COVID-19 patients who underwent elective tracheostomy (n = 65) during critical care in a tertiary care institute in Central India from May 1, 2020, to April 30, 2021. Data were collected from Medical records, ICU charts, and follow-up visits by patient. A primary objective was to study the clinical characteristics, tracheostomy complications, weaning outcomes, and mortality at 28 and 60 days of ICU admission. We categorized the cohort into two groups (deceased and survivor) and studied association of clinical parameters with 28-day mortality. Cox Proportional regression analysis was applied to calculate the hazard ratio among the predictors of mortality with p value <0.05 as significant. RESULTS: Elective tracheostomy was done in 69 of 436 (15.8%) patients on invasive mechanical ventilation, of which 65 were included. Tracheostomy was percutaneous in 45/65 (69%) and surgical in 20/65 (31%) with timing from intubation as early in 41/65 and late in 24/65 with most common indication as weaning failure followed by anticipated prolonged ventilation. Tracheostomy complications were present in 29/65 (45%) patients with no difference in complication rates between timing and type of tracheostomy. Downsizing, decannulation, and weaning were successful in 22%, 32 (49%), and 35/65 (54%) patients after tracheostomy. The 28-day mortality was 30/65 (46%). The fractional inspired oxygen concentration (FiO2) requirement in survivors was lower (0.4-0.6, p = 0.015) with a higher PaO2/FiO2 ratio (118-200, p = 0.033). Early tracheostomy within 7 days of intubation was not associated with weaning or survival benefit. CONCLUSIONS: We suggest that tracheostomy should be delayed to after 7 days of intubation, especially till FiO2 reduces to 0.5 with improvement in PaO2/FiO2 for better outcomes and avoiding a wasted procedure (CTRI/2021/07/034768). STUDY HIGHLIGHTS: Tracheostomy is integral in care of COVID-19 patients needing prolonged ventilation. There is no difference in complications in early/late or percutaneous dilatational/surgical technique. We observed successful weaning post-tracheostomy in 54% patients. Mortality at 28 days was 46%. Early tracheostomy within 7 days of intubation did not improve weaning or survival. HOW TO CITE THIS ARTICLE: Karna ST, Trivedi S, Singh P, Khurana A, Gouroumourty R, Dodda B, et al. Weaning Outcomes and 28-day Mortality after Tracheostomy in COVID-19 Patients in Central India: A Retrospective Observational Cohort Study. Indian J Crit Care Med 2022;26(1):85-93.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20171868

ABSTRACT

IntroductionSteroids have shown its usefulness in critically ill COVID19 patients. However time of starting steroid and dose tailored to severity remains a matter of inquiry due to still emerging evidences and wide-ranging concerns of benefits and harms. We did a retrospective record analysis in an apex teaching hospital ICU setting to explore optimal doses and duration of steroid therapy which can decrease mortality. Methodology114 adults with COVID19-ARDS admitted to ICU between 20thMarch-15thAugust2020 were included in chart review. We did preliminary exploratory analysis(rooted in steroid therapy matrix categorized by dose and duration) to understand the effect of several covariates on survival. This was followed by univariate and multivariate Cox proportion hazard regression analysis and model diagnostics. ResultsExploratory analysis and visualization indicated age, optimal steroid, severity (measured in P/F) of disease and infection status as potential covariates for survival. Univariate cox regression analysis showed significant positive association of age>60 years{2.6 (1.5-4.7)} and protective effect of optimum steroid{0.38(0.2-0.72)} on death (hazard) in critically ill patients. Multivariate cox regression analysis after adjusting effect of age showed protective effect of optimum steroid on hazard defined as death {0.46(0.23-0.87),LR=17.04,(p=2e- 04)}.The concordance was 0.70 and model diagnostics fulfilled the assumption criteria for proportional hazard model. ConclusionOptimal dose steroid as per defined optimum (<24 hours and doses tailored to P/F at presentation) criteria can offer protective effect from mortality which persists after adjusting for age. This protective effect was not found to be negatively influenced by the risk of infection. No funding was taken for this paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...