Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 115(1): 160-167, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34791314

ABSTRACT

Bt technologies have played a major role in the control of bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), in cotton. Variation in expression levels among varieties and plant parts, along with selection pressure on bollworm populations, has led to the development of resistance to some Bt proteins. Trials were conducted to evaluate how cotton varieties expressing different Bt proteins affect bollworm larval behavior and their damage in flowering cotton. Differences in larval recovery were observed among cotton varieties at 3 d with 3-gene Bt cotton having the lowest recovery and non-Bt cotton having the greatest recovery. Loss of bloom tags and abscission of small bolls at the site of infestation affected bollworm larval recovery among varieties. Day after infestation was the main factor that affected bollworm movement across all varieties. Number of total damaged fruiting forms by an individual bollworm larva was different among all varieties. Overall, flower bud (square) and fruit (boll) damage by an individual larva was lower on 3-gene cotton than 2-gene cotton and non-Bt cotton. An individual larva damaged fewer squares on 2-gene cotton than non-Bt cotton, but boll damage from bollworm was similar among 2-gene cotton and non-Bt cotton. The level of square and boll damage in 2-gene cotton has increased compared to previous research further supporting the occurrence of bollworm resistance to Cry proteins. The 3-gene cotton containing the Vip3A gene experienced low levels of damage and survival. These results will be important for improving management recommendations of bollworm in Bt cotton technologies.


Subject(s)
Hemolysin Proteins , Moths , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endotoxins/genetics , Feeding Behavior , Fruit , Gossypium/genetics , Hemolysin Proteins/metabolism , Larva , Moths/genetics , Pest Control, Biological/methods , Plants, Genetically Modified/genetics
2.
J Econ Entomol ; 113(4): 1816-1822, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32333008

ABSTRACT

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is an important pest of cotton in many areas of the southern United States. An experiment was conducted at two locations in Mississippi during 2016 and 2017 to evaluate action thresholds for tarnished plant bug on a novel Bacillus thuringiensis cotton that expresses the Cry51Aa2.834_16 toxin. Treatments included the current action threshold, a 2× threshold, and treatments where insecticides were only applied during the early season (preflower) or only during late season (during flowering) based on the current action thresholds. These were compared to an untreated control and a weekly insecticide use regime that received weekly insecticide sprays. All treatments were imposed on both Bt Cry1Aa2.834_16 cotton and a nontraited cotton. The Bt Cry1Aa2.834_16 trait reduced the number of tarnished plant bugs and injury, and improved yields compared to nontraited cotton. For all spray treatments except the weekly insecticide use regime, yields were greater for the Bt Cry51Aa2.834_16 cotton than the nontraited cotton. In terms of thresholds, Bt Cry1Aa2.834_16 cotton sprayed based on current action thresholds resulted in similar yields to the weekly insecticide use regime of both cotton types. In contrast, the 2× threshold resulted in lower yields than the current threshold for both cotton types. Though thresholds intermediate to the currently recommended action threshold and the 2× threshold were not tested, these data suggest that currently recommended action thresholds appear appropriate for Bt Cry51Aa2.834_16 cotton. These results suggest that this trait will be an important component of current IPM programs in cotton where tarnished plant bug is an important pest.


Subject(s)
Heteroptera , Insecticides , Animals , Gossypium , Mississippi , Seasons
3.
J Econ Entomol ; 111(1): 10-15, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29281077

ABSTRACT

Neonicotinoid insecticides are currently one of two classes of chemicals available as a seed treatment for growers to manage early season insect pests of cotton, Gossypium hirsutum L. (Malvales: Malvaceae), and they are used on nearly 100% of cotton hectares in the midsouthern states. An analysis was performed on 100 seed-treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoid seed treatments in cotton production systems. The analysis compared seed treated with neonicotinoid insecticides seed treatments plus a fungicide with seed only treated with fungicide. When analyzed by state, cotton yields were significantly greater when neonicotinoid seed treatments were used compared with fungicide-only treatments. Cotton treated with neonicotinoid seed treatments yielded 123, 142, 95, and 104 kg ha-1, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments provided an additional 115 kg lint ha-1 comparedwith fungicide only treated seed. Average net returns from cotton with a neonicotinoid seed treatment were $1,801 per ha-1 compared with $1,660 per ha-1 for cottonseed treated with fungicide only. Economic returns for cotton with neonicotinoid seed treatments were significantly greater than cottonseed treated with fungicide only in 8 out of 15 yr representing every state. These data show that neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South cotton compared with fungicide only treated seed.


Subject(s)
Fungicides, Industrial , Insect Control/methods , Insecticides , Neonicotinoids , Arkansas , Crop Protection/economics , Crop Protection/methods , Gossypium/growth & development , Insect Control/economics , Louisiana , Mississippi , Seeds/physiology , Tennessee
4.
J Econ Entomol ; 111(1): 187-192, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29177425

ABSTRACT

Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn.


Subject(s)
Crop Protection/methods , Fungicides, Industrial/administration & dosage , Insect Control/economics , Insecticides/administration & dosage , Neonicotinoids/administration & dosage , Zea mays , Crop Protection/economics , Southeastern United States , Tennessee , Zea mays/growth & development
5.
J Econ Entomol ; 109(3): 1156-1160, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27091814

ABSTRACT

Early-season insect management is complex in the Mid-South region of the United States. A complex of multiple pest species generally occurs simultaneously at subthreshold levels in most fields. Neonicotinoids are the only insecticide seed treatment widely used in soybean, Glycine max L., production. An analysis was performed on 170 trials conducted in Arkansas, Louisiana, Mississippi, and Tennessee from 2005 to 2014 to determine the impact of neonicotinoid seed treatments in soybean. The analysis compared soybean seed treated with a neonicotinoid insecticide and a fungicide with soybean seed only treated with the same fungicide. When analyzed by state, soybean yields were significantly greater in all states when neonicotinoid seed treatments were used compared with fungicide-only treatments. Soybean treated with neonicotinoid treatments yielded 112.0 kg ha -1 , 203.0 kg ha -1 , 165.0 kg ha -1 , and 70.0 kg ha -1 , higher than fungicide-only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments yielded 132.0 kg ha -1 more than with fungicide-only treated seed. Net returns from neonicotinoid seed treatment usage were US$1,203 per ha -1 compared with US$1,172 per ha -1 for fungicide-only treated seed across the Mid-South. However, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only treated seed in 4 out of the 10 yr. When analyzed by state economic returns the neonicotinoid seed treatments were significantly greater than fungicide-only treated seed in Louisiana and Mississippi. These data show that in some areas and years, neonicotinoid seed treatments provide significant economic benefits in Mid-South soybean.

SELECTION OF CITATIONS
SEARCH DETAIL
...