Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 2076, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136115

ABSTRACT

Authenticating valuable objects is widely assumed to involve protracted scrutiny for detection of reproduction flaws. Yet, accurate authentication of banknotes is possible within one second of viewing, suggesting that rapid neural processes may underpin counterfeit detection. To investigate, we measured event-related brain potentials (ERPs) in response to briefly viewed genuine or forensically recovered counterfeit banknotes presented in a visual oddball counterfeit detection task. Three ERP components, P1, P3, and extended P3, were assessed for each combination of banknote type (genuine, counterfeit) and overt response ("real", "fake"). P1 amplitude was greater for oddballs, demonstrating that the initial feedforward sweep of visual processing yields the essential information for differentiating genuine from counterfeit. A similar oddball effect was found for P3. The magnitude of this P3 effect was positively correlated with behavioural counterfeit sensitivity, although the corresponding correlation for P1 was not. For the extended P3, amplitude was greatest for correctly detected counterfeits and similarly small for missed counterfeits, incorrectly and correctly categorised genuine banknotes. These results show that authentication of complex stimuli involves a cascade of neural processes that unfolds in under a second, beginning with a very rapid sensory analysis, followed by a later decision stage requiring higher level processing.

2.
Atten Percept Psychophys ; 82(1): 109-117, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31069635

ABSTRACT

Ensemble perception refers to awareness of average properties, e.g. size, of "noisy" elements that often comprise visual arrays in natural scenes. Here, we asked how ensemble perception might be influenced when some but not all array elements are associated with monetary reward. Previous studies show that reward associations can speed object processing, facilitate selection, and enhance working-memory maintenance, suggesting they may bias ensemble judgments. To investigate, participants reported the average element size of brief arrays of different-sized circles. In the learning phase, all circles had the same color, but different colors produced high or low performance-contingent rewards. Then, in an unrewarded test phase, arrays comprised three spatially inter-mixed subsets, each with a different color, including the high-reward color. In different trials, the mean size of the subset with the high-reward color was smaller, larger, or the same as the ensemble mean. Ensemble size estimates were significantly biased by the high-reward-associated subset, showing that value associations modulate ensemble perception. In the test phase of a second experiment, a pattern mask appeared immediately after array presentation to limit top-down processing. Not only was value-biasing eliminated, ensemble accuracy improved, suggesting that value associations distort consciously available ensemble representation via late high-level processing.


Subject(s)
Reward , Visual Perception/physiology , Adolescent , Awareness , Bias , Color Perception , Female , Humans , Judgment , Learning , Male , Memory, Short-Term , Size Perception , Social Values , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...