Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 125(1): 124-133, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29494286

ABSTRACT

The oxygen dependence of respiration was obtained in situ in microscopic regions of rat spinotrapezius muscle for different levels of metabolic activity produced by electrical stimulation at rates from 0.5 to 8 Hz. The rate of O2 consumption (V̇o2) was measured with phosphorescence quenching microscopy (PQM) as the rate of O2 disappearance in a muscle with rapid flow arrest. The phosphorescent oxygen probe was loaded into the interstitial space of the muscle to give O2 tension (Po2) in the interstitium. A set of sigmoid curves relating the Po2 dependence of V̇o2 was obtained with a Po2-dependent region below a characteristic Po2 (~30 mmHg) and a Po2-independent region above this Po2. The V̇o2(Po2) plots were fit by the Hill equation containing O2 demand (rest to 8 Hz: 216 ± 26 to 636 ± 77 nl O2/cm3 s) and the Po2 value corresponding to O2 demand/2 (rest to 8 Hz: 22 ± 4 to 11 ± 1 mmHg). The initial Po2 and V̇o2 pairs of values measured at the moment of flow arrest formed a straight line, determining the rate of oxygen supply. This line had a negative slope, equal to the oxygen conductance for the O2 supply chain. For each level of tissue blood flow the set of possible values of Po2 and V̇o2 consists of the intersection points between this O2 supply line and the set of V̇o2 curves. An electrical analogy for the intraorgan O2 supply and consumption is an inverting transistor amplifier, which allows the use of graphic analysis methods for prediction of the behavior of the oxygen processing system in organs. NEW & NOTEWORTHY The sigmoidal shape of curves describing oxygen dependence of muscle respiration varies from basal to maximal workload and characterizes the oxidative metabolism of muscle. The rate of O2 supply depends on extracellular O2 tension and is determined by the overall oxygen conductance in the muscle. The dynamics of oxygen consumption is determined by the supply line that intersects the oxygen demand curves. An electrical analogy for the oxygen supply/consumption system is an inverting transistor amplifier.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/physiology , Oxygen/metabolism , Animals , Electric Stimulation/methods , Male , Oxygen Consumption/physiology , Rats , Rats, Sprague-Dawley , Regional Blood Flow/physiology , Respiration , Rest/physiology
2.
Microvasc Res ; 91: 30-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24189119

ABSTRACT

Leukoreduction of blood used for transfusion alleviates febrile transfusion reactions, graft versus host disease and alloimmunization to leukocyte antigen. However, the actual clinical benefit of leukoreduction in terms of microcirculatory tissue O2 delivery after packed red blood cell (pRBC) transfusion has not been investigated. As such, the aim of this study was to determine the effects of non-leukoreduced (NLR) and leukoreduced (LR) fresh pRBC transfusion on interstitial oxygenation in anesthetized male Sprague-Dawley rats. Interstitial fluid PO2 and arteriolar diameters in spinotrapezius muscle preparations were monitored before and after transfusion with NLR- or LR-pRBCs. The major findings were that (1) transfusion of NLR-pRBCs significantly decreased interstitial oxygenation whereas transfusion of LR-pRBCs did not, and (2) transfusion with LR-pRBCs elicited a substantially greater increase in arterial blood pressure (ABP) than did transfusion with NLR-pRBCs. These changes in PO2 and ABP were not associated with changes in the diameters of resistance arterioles in the spinotrapezius muscle. These data suggest that transfusion of fresh NLR-pRBCs may negatively affect tissue oxygenation via enhanced leukocyte influx and decreased O2 delivery. They also suggest that leukocytes diminish the capability of transfused pRBCs to increase cardiac output. As such, transfusion of LR-pRBCs may be less deleterious on tissue PO2 levels than NLR-pRBCs although a concomitantly greater increase in ABP may accompany transfusion of LR-pRBCs.


Subject(s)
Blood Pressure , Erythrocyte Transfusion/methods , Leukocytes/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Oxygen/chemistry , Animals , Endothelium, Vascular/metabolism , Hematocrit , Luminescent Measurements , Male , Microcirculation , Microscopy , Muscles/metabolism , Perfusion , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...