Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genet ; 91(1): 1-5, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8454280

ABSTRACT

Deficiency of liver arginase (AI) is characterized clinically by hyperargininemia, progressive mental impairment, growth retardation, spasticity, and periodic episodes of hyperammonemia. The rarest of the inborn errors of urea cycle enzymes, it has been considered the least life-threatening, by virtue of the typical absence of catastrophic neonatal hyperammonemia and its compatibility with a longer life span. This has been attributed to the persistence of some ureagenesis in these patients through the activity of a second isozyme of arginase (AII) located predominantly in the kidney. We have treated a number of arginase-deficient patients into young adulthood. While they are severely retarded and wheelchair-bound, their general medical care has been quite tractable. Recently, however, two of the oldest (M.U., age 20, and M.O., age 22) underwent rapid deterioration, ending in hyperammonemic coma and death, precipitated by relatively minor viral respiratory illnesses inducing a catabolic state with increased endogenous nitrogen load. In both cases, postmortem examination revealed severe global cerebral edema and aspiration pneumonia. Enzyme assays confirmed the absence of AI activity in the livers of both patients. In contrast, AII activity (identified by its different cation cofactor requirements and lack of precipitation with anti-AI antibody) was markedly elevated in kidney tissues, 20-fold in M.O. and 34-fold in M.U. Terminal plasma arginine (1500 mumols/l) and ammonia (1693 mmol/l) levels of M.U. were substantially higher than those of M.O. (348 mumols/l and 259 mumols/l, respectively). By Northern blot analysis, AI mRNA was detected in M.O.'s liver but not in M.U.'s; similarly, anti-AI crossreacting material was observed by Western blot in M.O. only. These findings indicate that, despite their more long-lived course, patients with arginase deficiency remain vulnerable to the same catastrophic events of hyperammonemia that patients with other urea cycle disorders typically suffer in infancy. Further, unlike those other disorders, an attempt is made to compensate for the primary enzyme deficiency by induction of another isozyme in a different tissue. Such substrate-stimulated induction of an enzyme may be unique in a medical genetics setting and raises novel options for eventual gene therapy of this disorder.


Subject(s)
Amino Acid Metabolism, Inborn Errors/enzymology , Arginase/analysis , Hyperargininemia , Isoenzymes/analysis , Kidney/enzymology , Liver/enzymology , Adult , DNA/analysis , Enzyme Induction , Humans , Male , RNA, Messenger/analysis
2.
Am J Hum Genet ; 50(6): 1281-90, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1598908

ABSTRACT

We have explored the molecular pathology in 28 individuals homozygous or heterozygous for liver arginase deficiency (hyperargininemia) by a combination of Southern analysis, western blotting, DNA sequencing, and PCR. This cohort represents the majority of arginase-deficient individuals worldwide. Only 2 of 15 homozygous patients on whom red blood cells were available had antigenically cross-reacting material as ascertained by western blot analysis using anti-liver arginase antibody. Southern blots of patient genomic DNAs, cut with a variety of restriction enzymes and probed with a near-full-length (1,450-bp) human liver arginase cDNA clone, detected no gross gene deletions. Loss of a TaqI cleavage site was identified in three individuals: in a homozygous state in a Saudi Arabian patient at one site, at a different site in homozygosity in a German patient, and in heterozygosity in a patient from Australia. The changes in the latter two were localized to exon 8, through amplification of this region by PCR and electrophoretic analysis of the amplified fragment after treatment with TaqI; the precise base changes (Arg291X and Thr290Ser) were confirmed by sequencing. It is interesting that the latter nucleotide variant (Thr290Ser) was found to lie adjacent to the TaqI site rather than within it, though whether such a conservative amino acid substitution represents a true pathologic mutation remains to be determined. We conclude that arginase deficiency, though rare, is a heterogeneous disorder at the genotypic level, generally encompassing a variety of point mutations rather than substantial structural gene deletions.


Subject(s)
Arginase/genetics , DNA/genetics , Hyperargininemia , Isoenzymes/deficiency , Isoenzymes/genetics , Liver/enzymology , Skin/enzymology , Amino Acid Sequence , Amino Acids/analysis , Arginase/isolation & purification , Base Sequence , Blotting, Southern , Blotting, Western , Codon/genetics , DNA/isolation & purification , Heterozygote , Humans , Isoenzymes/isolation & purification , Molecular Sequence Data , Oligodeoxyribonucleotides , Polymerase Chain Reaction/methods , Reference Values , Restriction Mapping
3.
Somat Cell Mol Genet ; 17(4): 369-75, 1991 Jul.
Article in English | MEDLINE | ID: mdl-1887333

ABSTRACT

While routinely mapping point mutations within the arginase locus of a collection of hyperargininemic patients, we discovered that a base immediately outside a restriction endonuclease recognition site (TaqI) can eliminate cleavage of this site by this enzyme. The genetic lesion lay in a base immediately flanking a TaqI recognition site within exon 8 of the arginase locus and abolished cutting by approximately 80%. We wish to emphasize the necessity of heeding subtle cues frequently encountered while generating restriction enzyme data, because neither Southern blot maps nor endonuclease digestion of polymerase chain reaction amplified products of exon 8 accurately predicted where the point mutation lay. To our knowledge, this is the first instance of inhibition of cleavage by flanking bases occurring on natural (nonsynthetic) DNA substrates, i.e., within the clinical setting of characterization of a human genetic disorder.


Subject(s)
Deoxyribonucleases, Type II Site-Specific , Mutation , Restriction Mapping , Base Sequence , Blotting, Southern , Densitometry , Humans , Hydrolysis , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Molecular Sequence Data , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...