Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(7): e1010834, 2023 07.
Article in English | MEDLINE | ID: mdl-37418503

ABSTRACT

Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.


Subject(s)
Staphylococcus aureus , gamma-Glutamyltransferase , Humans , Staphylococcus aureus/genetics , gamma-Glutamyltransferase/genetics , Glutathione Disulfide , Glutathione/genetics , Sulfur
2.
Cancer Res ; 83(3): 374-385, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36449563

ABSTRACT

RNA editing modifies single nucleotides of RNAs, regulating primary protein structure and protein abundance. In recent years, the diversity of proteins and complexity of gene regulation associated with RNA editing dysregulation has been increasingly appreciated in oncology. Large-scale shifts in editing have been observed in bulk tumors across various cancer types. However, RNA editing in single cells and individual cell types within tumors has not been explored. By profiling editing in single cells from lung adenocarcinoma biopsies, we found that the increased editing trend of bulk lung tumors was unique to cancer cells. Elevated editing levels were observed in cancer cells resistant to targeted therapy, and editing sites associated with drug response were enriched. Consistent with the regulation of antiviral pathways by RNA editing, higher editing levels in cancer cells were associated with reduced antitumor innate immune response, especially levels of natural killer cell infiltration. In addition, the level of RNA editing in cancer cells was positively associated with somatic point mutation burden. This observation motivated the definition of a new metric, RNA editing load, reflecting the amount of RNA mutations created by RNA editing. Importantly, in lung cancer, RNA editing load was a stronger predictor of patient survival than DNA mutations. This study provides the first single cell dissection of editing in cancer and highlights the significance of RNA editing load in cancer prognosis. SIGNIFICANCE: RNA editing analysis in single lung adenocarcinoma cells uncovers RNA mutations that correlate with tumor mutation burden and cancer innate immunity and reveals the amount of RNA mutations that strongly predicts patient survival. See related commentary by Luo and Liang, p. 351.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , RNA Editing , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , RNA , Prognosis , Immunity, Innate/genetics , Single-Cell Analysis
3.
Oncotarget ; 13: 1054-1067, 2022.
Article in English | MEDLINE | ID: mdl-36128328

ABSTRACT

Loss-of-function mutations in genes encoding the Krebs cycle enzymes Fumarate Hydratase (FH) and Succinate Dehydrogenase (SDH) induce accumulation of fumarate and succinate, respectively and predispose patients to hereditary cancer syndromes including the development of aggressive renal cell carcinoma (RCC). Fumarate and succinate competitively inhibit αKG-dependent dioxygenases, including Lysine-specific demethylase 4A/B (KDM4A/B), leading to suppression of the homologous recombination (HR) DNA repair pathway. In this study, we have developed new syngeneic Fh1- and Sdhb-deficient murine models of RCC, which demonstrate the expected accumulation of fumarate and succinate, alterations in the transcriptomic and methylation profile, and an increase in unresolved DNA double-strand breaks (DSBs). The efficacy of poly ADP-ribose polymerase inhibitors (PARPis) and temozolomide (TMZ), alone and in combination, was evaluated both in vitro and in vivo. Combination treatment with PARPi and TMZ results in marked in vitro cytotoxicity in Fh1- and Sdhb-deficient cells. In vivo, treatment with standard dosing of the PARP inhibitor BGB-290 and low-dose TMZ significantly inhibits tumor growth without a significant increase in toxicity. These findings provide the basis for a novel therapeutic strategy exploiting HR deficiency in FH and SDH-deficient RCC with combined PARP inhibition and low-dose alkylating chemotherapy.


Subject(s)
Carcinoma, Renal Cell , Dioxygenases , Kidney Neoplasms , Adenosine Diphosphate Ribose , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Citric Acid Cycle , DNA , Fumarate Hydratase/genetics , Fumarates , Humans , Jumonji Domain-Containing Histone Demethylases , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Lysine , Mice , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Succinate Dehydrogenase/genetics , Succinates , Temozolomide/pharmacology
4.
Nucleic Acids Res ; 50(8): e48, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35061903

ABSTRACT

The application of single-cell RNA sequencing (scRNAseq) for the evaluation of chemicals, drugs, and food contaminants presents the opportunity to consider cellular heterogeneity in pharmacological and toxicological responses. Current differential gene expression analysis (DGEA) methods focus primarily on two group comparisons, not multi-group dose-response study designs used in safety assessments. To benchmark DGEA methods for dose-response scRNAseq experiments, we proposed a multiplicity corrected Bayesian testing approach and compare it against 8 other methods including two frequentist fit-for-purpose tests using simulated and experimental data. Our Bayesian test method outperformed all other tests for a broad range of accuracy metrics including control of false positive error rates. Most notable, the fit-for-purpose and standard multiple group DGEA methods were superior to the two group scRNAseq methods for dose-response study designs. Collectively, our benchmarking of DGEA methods demonstrates the importance in considering study design when determining the most appropriate test methods.


Subject(s)
Benchmarking , Research Design , Bayes Theorem , Gene Expression
5.
Infect Immun ; 88(3)2020 02 20.
Article in English | MEDLINE | ID: mdl-31843961

ABSTRACT

Staphylococcus aureus is a significant human pathogen due to its capacity to cause a multitude of diseases. As such, S. aureus efficiently pillages vital nutrients from the host; however, the molecular mechanisms that support sulfur acquisition during infection have not been established. One of the most abundant extracellular sulfur-containing metabolites within the host is cysteine, which acts as the major redox buffer in the blood by transitioning between reduced and oxidized (cystine) forms. We therefore hypothesized that S. aureus acquires host-derived cysteine and cystine as sources of nutrient sulfur during systemic infection. To test this hypothesis, we used the toxic cystine analogue selenocystine to initially characterize S. aureus homologues of the Bacillus subtilis cystine transporters TcyABC and TcyP. We found that genetic inactivation of both TcyA and TcyP induced selenocystine resistance. The double mutant also failed to proliferate in medium supplemented with cystine, cysteine, or N-acetyl cysteine as the sole sulfur source. However, only TcyABC was necessary for proliferation in defined medium containing homocystine as the sulfur source. Using a murine model of systemic infection, we observed tcyP-dependent competitive defects in the liver and heart, indicating that this sulfur acquisition strategy supports proliferation of S. aureus in these organs. Phylogenetic analyses identified TcyP homologues in many pathogenic species, implying that this sulfur procurement strategy is conserved. In total, this study is the first to experimentally validate sulfur acquisition systems in S. aureus and establish their importance during pathogenesis.


Subject(s)
Cystine/metabolism , Membrane Transport Proteins/physiology , Staphylococcal Infections/metabolism , Staphylococcus aureus/physiology , Sulfur/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...