Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(15): eadk2082, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598634

ABSTRACT

We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation, Neoplastic
3.
Cancer Discov ; 13(3): 632-653, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36399432

ABSTRACT

Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE: This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Circulating Tumor DNA , Prostatic Neoplasms , Male , Humans , Circulating Tumor DNA/genetics , Nucleosomes/genetics , Precision Medicine , Prostatic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Phenotype
4.
Nat Commun ; 13(1): 7475, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463275

ABSTRACT

Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification and help guide clinical precision oncology. Here we develop Griffin, a framework for profiling nucleosome protection and accessibility from cfDNA to study the phenotype of tumors using as low as 0.1x coverage whole genome sequencing data. Griffin employs a GC correction procedure tailored to variable cfDNA fragment sizes, which generates a better representation of chromatin accessibility and improves the accuracy of cancer detection and tumor subtype classification. We demonstrate estrogen receptor subtyping from cfDNA in metastatic breast cancer. We predict estrogen receptor subtype in 139 patients with at least 5% detectable circulating tumor DNA with an area under the receive operator characteristic curve (AUC) of 0.89 and validate performance in independent cohorts (AUC = 0.96). In summary, Griffin is a framework for accurate tumor subtyping and can be generalizable to other cancer types for precision oncology applications.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Nucleosomes/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Receptors, Estrogen , Precision Medicine
5.
NPJ Precis Oncol ; 5(1): 83, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34535742

ABSTRACT

Circulating tumor DNA (ctDNA) sequencing studies could provide novel insights into the molecular pathology of cancer in sub-Saharan Africa. In 15 patient plasma samples collected at the time of diagnosis as part of the Ghana Breast Health Study and unselected for tumor grade and subtype, ctDNA was detected in a majority of patients based on whole- genome sequencing at high (30×) and low (0.1×) depths. Breast cancer driver copy number alterations were observed in the majority of patients.

6.
Genetics ; 214(1): 121-134, 2020 01.
Article in English | MEDLINE | ID: mdl-31754016

ABSTRACT

One major aspect of the aging process is the onset of chronic, low-grade inflammation that is highly associated with age-related diseases. The molecular mechanisms that regulate these processes have not been fully elucidated. We have identified a spontaneous mutant mouse line, small with kinky tail (skt), that exhibits accelerated aging and age-related disease phenotypes including increased inflammation in the brain and retina, enhanced age-dependent retinal abnormalities including photoreceptor cell degeneration, neurodegeneration in the hippocampus, and reduced lifespan. By positional cloning, we identified a deletion in chondroitin sulfate synthase 1 (Chsy1) that is responsible for these phenotypes in skt mice. CHSY1 is a member of the chondroitin N-acetylgalactosaminyltransferase family that plays critical roles in the biosynthesis of chondroitin sulfate, a glycosaminoglycan (GAG) that is attached to the core protein to form the chondroitin sulfate proteoglycan (CSPG). Consistent with this function, the Chsy1 mutation dramatically decreases chondroitin sulfate GAGs in the retina and hippocampus. In addition, macrophage and neutrophil populations appear significantly altered in the bone marrow and spleen of skt mice, suggesting an important role for CHSY1 in the functioning of these immune cell types. Thus, our study reveals a previously unidentified impact of CHSY1 in the retina and hippocampus. Specifically, chondroitin sulfate (CS) modification of proteins by CHSY1 appears critical for proper regulation of immune cells of the myeloid lineage and for maintaining the integrity of neuronal tissues, since a defect in this gene results in increased inflammation and abnormal phenotypes associated with age-related diseases.


Subject(s)
Chondroitin Sulfates/metabolism , Glucuronosyltransferase/metabolism , Inflammation/metabolism , Multifunctional Enzymes/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Neurodegenerative Diseases/metabolism , Protein Processing, Post-Translational , Proteins/genetics , Retinal Degeneration/metabolism , Age Factors , Animals , Apoptosis/physiology , Female , Glucuronosyltransferase/genetics , Inflammation/genetics , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Multifunctional Enzymes/genetics , Mutation , N-Acetylgalactosaminyltransferases/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology
7.
PLoS Genet ; 15(3): e1008004, 2019 03.
Article in English | MEDLINE | ID: mdl-30921322

ABSTRACT

Germ cell immortality, or transgenerational maintenance of the germ line, could be promoted by mechanisms that could occur in either mitotic or meiotic germ cells. Here we report for the first time that the GSP-2 PP1/Glc7 phosphatase promotes germ cell immortality. Small RNA-induced genome silencing is known to promote germ cell immortality, and we identified a separation-of-function allele of C. elegans gsp-2 that is compromised for germ cell immortality and is also defective for small RNA-induced genome silencing and meiotic but not mitotic chromosome segregation. Previous work has shown that GSP-2 is recruited to meiotic chromosomes by LAB-1, which also promoted germ cell immortality. At the generation of sterility, gsp-2 and lab-1 mutant adults displayed germline degeneration, univalents, histone methylation and histone phosphorylation defects in oocytes, phenotypes that mirror those observed in sterile small RNA-mediated genome silencing mutants. Our data suggest that a meiosis-specific function of GSP-2 ties small RNA-mediated silencing of the epigenome to germ cell immortality. We also show that transgenerational epigenomic silencing at hemizygous genetic elements requires the GSP-2 phosphatase, suggesting a functional link to small RNAs. Given that LAB-1 localizes to the interface between homologous chromosomes during pachytene, we hypothesize that small localized discontinuities at this interface could promote genomic silencing in a manner that depends on small RNAs and the GSP-2 phosphatase.


Subject(s)
Germ Cells/metabolism , Protein Phosphatase 1/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Genome , Germ Cells/physiology , Meiosis/physiology , Meiotic Prophase I/physiology , Methylation , Phosphoric Monoester Hydrolases , Protein Phosphatase 1/metabolism , RNA Interference/physiology , RNA, Small Interfering
8.
PLoS One ; 13(8): e0201986, 2018.
Article in English | MEDLINE | ID: mdl-30102730

ABSTRACT

Tissues with high-energy demand including the heart are rich in the energy-producing organelles, mitochondria, and sensitive to mitochondrial dysfunction. While alterations in mitochondrial function are increasingly recognized in cardiovascular diseases, the molecular mechanisms through which changes in mitochondria lead to heart abnormalities have not been fully elucidated. Here, we report that transgenic mice overexpressing a novel regulator of mitochondrial dynamics, transmembrane protein 135 (Tmem135), exhibit increased fragmentation of mitochondria and disease phenotypes in the heart including collagen accumulation and hypertrophy. The gene expression analysis showed that genes associated with ER stress and unfolded protein response, and especially the pathway involving activating transcription factor 4, are upregulated in the heart of Tmem135 transgenic mice. It also showed that gene expression changes in the heart of Tmem135 transgenic mice significantly overlap with those of aged mice in addition to the similarity in cardiac phenotypes, suggesting that changes in mitochondrial dynamics may be involved in the development of heart abnormalities associated with aging. Our study revealed the pathological consequence of overexpression of Tmem135, and suggested downstream molecular changes that may underlie those disease pathologies.


Subject(s)
Gene Expression , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Myocardium/metabolism , Animals , Biomarkers , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Heart Diseases/genetics , Heart Diseases/metabolism , Heart Diseases/mortality , Heart Diseases/pathology , Immunohistochemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Mitochondria, Heart/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Sequence Analysis, DNA
9.
Nucleic Acids Res ; 45(D1): D804-D811, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27907889

ABSTRACT

Whole-exome and whole-genome sequencing have facilitated the large-scale discovery of de novo variants in human disease. To date, most de novo discovery through next-generation sequencing focused on congenital heart disease and neurodevelopmental disorders (NDDs). Currently, de novo variants are one of the most significant risk factors for NDDs with a substantial overlap of genes involved in more than one NDD. To facilitate better usage of published data, provide standardization of annotation, and improve accessibility, we created denovo-db (http://denovo-db.gs.washington.edu), a database for human de novo variants. As of July 2016, denovo-db contained 40 different studies and 32,991 de novo variants from 23,098 trios. Database features include basic variant information (chromosome location, change, type); detailed annotation at the transcript and protein levels; severity scores; frequency; validation status; and, most importantly, the phenotype of the individual with the variant. We included a feature on our browsable website to download any query result, including a downloadable file of the full database with additional variant details. denovo-db provides necessary information for researchers to compare their data to other individuals with the same phenotype and also to controls allowing for a better understanding of the biology of de novo variants and their contribution to disease.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Genetic Variation , Germ-Line Mutation , Polymorphism, Single Nucleotide , Genetic Association Studies , Humans , Molecular Sequence Annotation , Web Browser
10.
Proc Natl Acad Sci U S A ; 111(41): E4323-31, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25258416

ABSTRACT

Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Germ Cells/cytology , Germ Cells/metabolism , RNA, Small Interfering/metabolism , Animals , Apoptosis , Cell Line, Transformed , Cell Proliferation , Chromosome Segregation , Gene Expression Regulation , Gene Silencing , Genetic Loci , Infertility , Mutation , Nondisjunction, Genetic , Spermatogenesis , Stress, Physiological , Tandem Repeat Sequences/genetics , Temperature , Transcription, Genetic
11.
Cell Rep ; 7(3): 762-73, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24767993

ABSTRACT

Defects in the Piwi/piRNA pathway lead to transposon desilencing and immediate sterility in many organisms. We found that the C. elegans Piwi mutant prg-1 became sterile after growth for many generations. This phenotype did not occur for RNAi mutants with strong transposon-silencing defects and was separable from the role of PRG-1 in transgene silencing. Brief periods of starvation extended the transgenerational lifespan of prg-1 mutants by stimulating the DAF-16/FOXO longevity transcription factor. Constitutive activation of DAF-16 via reduced daf-2 insulin/IGF-1 signaling immortalized prg-1 strains via RNAi proteins and histone H3 lysine 4 demethylases. In late-generation prg-1 mutants, desilencing of repetitive segments of the genome occurred, and silencing of repetitive loci was restored in prg-1; daf-2 mutants. This study reveals an unexpected interface between aging and transgenerational maintenance of germ cells, where somatic longevity is coupled to a genome-silencing pathway that promotes germ cell immortality in parallel to the Piwi/piRNA system.


Subject(s)
Argonaute Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Germ Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Animals , Argonaute Proteins/antagonists & inhibitors , Argonaute Proteins/metabolism , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors , Germ Cells/cytology , Oxidoreductases, N-Demethylating/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Insulin/deficiency , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction , Transcription Factors/metabolism
12.
Mamm Genome ; 24(9-10): 349-57, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23929036

ABSTRACT

Mutations in the gene for destrin (Dstn), an actin depolymerizing factor, lead to corneal abnormalities in mice. A null mutation in Dstn, termed Dstn (corn1) , isolated and maintained in the A.BY background (A.BY Dstn (corn1) ), results in corneal epithelial hyperproliferation, inflammation, and neovascularization. We previously reported that neovascularization in the cornea of Dstn (corn1) mice on the C57BL/6 background (B6.A.BY-Dstn (corn1) ) is significantly reduced when compared to A.BY Dstn (corn1) mice, suggesting the existence of genetic modifier(s). The purpose of this study is to identify the genetic basis of the difference in corneal neovascularization between A.BY Dstn (corn1) and B6.A.BY-Dstn (corn1) mice. We generated N2 mice for a whole-genome scan by backcrossing F1 progeny (A.BY Dstn (corn1) × B6.A.BY-Dstn (corn1) ) to B6.A.BY-Dstn (corn1) mice. N2 progeny were quantitatively phenotyped for the extent of corneal neovascularization and genotyped for markers across the mouse genome. We identified significant association of variability in corneal neovascularization with a locus on chromosome 3 (Chr3). The validity of the identified quantitative trait locus (QTL) was tested using B6 consomic mice carrying Chr3 from A/J mice. Dstn (corn1) mice from F1 and F2 intercrosses (B6.A.BY-Dstn (corn1)  × C57BL/6J-Chr3(A/J)/NaJ) were phenotyped for the extent of corneal neovascularization. This analysis showed that mice carrying the A/J allele at the QTL show significantly increased neovascularization. Our results indicate the existence of a modifier that genetically interacts with the Dstn gene. This modifier demonstrates allelic differences between C57BL6 and A.BY or A/J. The modifier is sufficient to increase neovascularization in Dstn (corn1) mice.


Subject(s)
Corneal Neovascularization/genetics , Destrin/genetics , Animals , Destrin/metabolism , Epistasis, Genetic , Genetic Association Studies , Lod Score , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Quantitative Trait Loci
13.
Cell ; 150(1): 88-99, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22738725

ABSTRACT

Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.


Subject(s)
Caenorhabditis elegans/genetics , Epigenomics , RNA Interference , RNA, Helminth/metabolism , RNA, Small Interfering/metabolism , Animals , Caenorhabditis elegans/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Female , Germ Cells/metabolism , Male , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...