Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Ecol ; 30(1): 39-47, 2019.
Article in English | MEDLINE | ID: mdl-30846891

ABSTRACT

The physical environment occupied by group-living animals can profoundly affect their cooperative social interactions and therefore their collective behavior and success. These effects can be especially apparent in human-modified habitats, which often harbor substantial variation in the physical environments available within them. For nest-building animal societies, this influence of the physical environment on collective behavior can be mediated by the construction of nests-nests could either buffer animal behavior from changes in the physical environment or facilitate shifts in behavior through changes in nest structure. We test these alternative hypotheses by examining the differences in collective prey-attacking behavior and colony persistence between fence-dwelling and tree-dwelling colonies of Stegodyphus dumicola social spiders. Fences and trees represent substantially different physical environments: fences are 2-dimensional and relatively homogenous environments, whereas tree branches are 3-dimensional and relatively heterogeneous. We found that fence-dwelling colonies attack prey more quickly and with more attackers than tree-dwelling colonies in both field and controlled settings. Moreover, in the field, fence-dwelling colonies captured more prey, were more likely to persist, and had a greater number of individuals remaining at the end of the experiment than tree-dwelling colonies. Intriguingly, we also observed a greater propensity for colony fragmentation in tree-dwelling colonies than fence-dwelling colonies. Our results demonstrate that the physical environment is an important influence on the collective behavior and persistence of colonies of social spiders, and suggest multiple possible proximate and ultimate mechanisms-including variation in web complexity, dispersal behavior, and bet-hedging-by which this influence may be realized.

2.
Proc Biol Sci ; 285(1887)2018 09 19.
Article in English | MEDLINE | ID: mdl-30232162

ABSTRACT

Animal social groups are complex systems that are likely to exhibit tipping points-which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions-yet this concept has not been carefully applied to these systems. Here, we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioural ecology and generate novel questions, methods, and approaches in animal behaviour and other fields, including community and ecosystem ecology. While some behaviours of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization-populations, communities, ecosystems-may help to reveal principles that transcend traditional disciplinary boundaries.


Subject(s)
Behavior, Animal , Social Behavior , Animals , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...