Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2319057121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687790

ABSTRACT

Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase St3gal4-/- mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of St3gal4-/- mice. Ex vivo flow chamber assays uncovered reduced adhesion of St3gal4-/- compared to wild type eosinophils. Using flow cytometry, we show reduced binding of CCL11 to St3gal4-/- eosinophils. Further, we noted reduced binding of CCL11 to its chemokine receptor CCR3 isolated from St3gal4-/- eosinophils. This was accompanied by almost absent CCR3 internalization of CCL11-stimulated St3gal4-/- eosinophils. Applying an ovalbumin-induced allergic airway disease model, we found a dramatic reduction in eosinophil numbers in bronchoalveolar lavage fluid following intratracheal challenge with ovalbumin in St3gal4-deficient mice. Finally, we also investigated tissue-resident eosinophils under homeostatic conditions and found reduced resident eosinophil numbers in the thymus and adipose tissue in the absence of ST3Gal-IV. Taken together, our results demonstrate an important role of ST3Gal-IV in CCR3-induced eosinophil recruitment in vivo rendering this enzyme an attractive target in reducing unwanted eosinophil infiltration in various disorders including allergic diseases.


Subject(s)
Eosinophils , Mice, Knockout , Receptors, CCR3 , Sialyltransferases , beta-Galactoside alpha-2,3-Sialyltransferase , Animals , Receptors, CCR3/metabolism , Receptors, CCR3/genetics , Sialyltransferases/metabolism , Sialyltransferases/genetics , Eosinophils/metabolism , Eosinophils/immunology , Mice , Chemokine CCL11/metabolism , Mice, Inbred C57BL , Ovalbumin/immunology , Bronchoalveolar Lavage Fluid
2.
Am J Pathol ; 179(5): 2637-50, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21907691

ABSTRACT

Anti-inflammatory properties of protein C (PC) concentrate are poorly studied compared to activated protein C, although PC is suggested to be safer in clinical use. We investigated how PC interferes with the leukocyte recruitment cascade during acute inflammation and its efficacy during murine endotoxemia. We found that similar to activated protein infusion, intravenous PC application reduced leukocyte recruitment in inflamed tissues in a dose- and time-dependent manner. During both tumor necrosis factor-α induced and trauma-induced inflammation of the cremaster muscle, intravital microscopy revealed that leukocyte adhesion and transmigration, but not rolling, were profoundly inhibited by 100 U/kg PC. Moreover, PC blocked leukocyte emigration into the bronchoalveolar space during lipopolysaccharide (LPS) induced acute lung injury. PC was efficiently activated in a murine endotoxemia model, which reduced leukocyte infiltration of organs and strongly improved survival (75% versus 25% of control mice). Dependent on the inflammatory model, PC provoked a significant inhibition of leukocyte recruitment as early as 1 hour after administration. PC-induced inhibition of leukocyte recruitment during acute inflammation critically involves thrombomodulin-mediated PC activation, subsequent endothelial PC receptor and protease-activated receptor-1-dependent signaling, and down-regulation of intercellular adhesion molecule 1 leading to reduced endothelial inflammatory response. We conclude that during acute inflammation and sepsis, PC is a fast acting and effective therapeutic approach to block leukocyte recruitment and improve survival.


Subject(s)
Acute Lung Injury/immunology , Anti-Inflammatory Agents/pharmacology , Endotoxemia/immunology , Leukocytes/drug effects , Pneumonia/immunology , Protein C/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antigens, CD/metabolism , Cell Adhesion/immunology , Cell Movement/immunology , Chemotaxis, Leukocyte/drug effects , Chemotaxis, Leukocyte/immunology , Cytokines/metabolism , Dose-Response Relationship, Drug , Endothelial Protein C Receptor , Endotoxemia/drug therapy , Escherichia coli Infections/drug therapy , Escherichia coli Infections/immunology , Intercellular Adhesion Molecule-1/physiology , Lipopolysaccharides/toxicity , Lymphocyte Function-Associated Antigen-1/physiology , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/injuries , Myositis/immunology , Receptors, Cell Surface/metabolism , Signal Transduction , Survival Analysis , Thrombomodulin/metabolism , Tumor Necrosis Factor-alpha/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...