Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 45: 108714, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36425963

ABSTRACT

The microstructure of steel greatly influences the mechanical properties. For 9 wt% Cr steels, which are widely used in the power generation industry, the steels have a ferritic and martensitic microstructure which can be altered by heat treating and chemical composition variations. Fully martensitic steels typically having high yield strengths but low ductility. Tempering can reduce the amount of martensite in the steel lowering the yield strength but increasing the ductility of the alloy. Alloying can alter the time required for a martensitic transformation. In authors' previously published research, the authors used machine learning methodology to predict room temperature tensile properties from scanning electron microscopy (SEM) images of the initial steel microstructures from a wide range of steel compositions. This data-in-brief supplies the raw image files and the associated tensile properties for the authors' previously published research utilized to predict tensile properties of steels [1].

2.
Adv Sci (Weinh) ; 8(23): e2101207, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34716677

ABSTRACT

Metallurgy and material design have thousands of years' history and have played a critical role in the civilization process of humankind. The traditional trial-and-error method has been unprecedentedly challenged in the modern era when the number of components and phases in novel alloys keeps increasing, with high-entropy alloys as the representative. New opportunities emerge for alloy design in the artificial intelligence era. Here, a successful machine-learning (ML) method has been developed to identify the microstructure images with eye-challenging morphology for a number of martensitic and ferritic steels. Assisted by it, a new neural-network method is proposed for the inverse design of alloys with 20 components, which can accelerate the design process based on microstructure. The method is also readily applied to other material systems given sufficient microstructure images. This work lays the foundation for inverse alloy design based on microstructure images with extremely similar features.

SELECTION OF CITATIONS
SEARCH DETAIL
...