Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789420

ABSTRACT

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Female , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Mice, Nude
2.
Foods ; 13(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38672868

ABSTRACT

A new form of plant-based meat, known as 'high-moisture meat analogs' (HMMAs), is captivating the market because of its ability to mimic fresh, animal muscle meat. Utilizing pea protein in the formulation of HMMAs provides unique labeling opportunities, as peas are both "non-GMO" and low allergen. However, many of the commercial pea protein isolate (PPI) types differ in functionality, causing variation in product quality. Additionally, PPI inclusion has a major impact on final product texture. To understand the collective impact of these variables, two studies were completed. The first study compared four PPI types while the second study assessed differences in PPI inclusion amount (30-60%). Both studies were performed on a Wenger TX-52 extruder, equipped with a long-barrel cooling die. Rapid-visco analysis (RVA) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated differences in protein solubility among the different PPI types. In general, lower protein solubility led to better product quality, based on visual evaluation. Cutting strength and texture profile analysis showed increasing PPI inclusion from 30-60% led to significantly higher product hardness (14,160-16,885 g) and toughness (36,690-46,195 g. s). PPI4 led to lower product toughness (26,110 and 33,725 g. s), compared to the other PPIs (44,620-60,965 g. s). Heat gelling capacity of PPI4 was also highest among PPI types, by way of least gelation concentration (LGC) and RVA. When compared against animal meat, using more PPI (50-60%) better mimicked the overall texture and firmness of beef steak and pork chops, while less PPI better represented a softer product like chicken breast. In summary, protein content and also functionality such as cold water solubility and heat gelation dictated texturization and final product quality. High cold water solubility and poor heat gelation properties led to excessive protein cross linking and thicker yet less laminated shell or surface layer. This led to lower cutting firmness and toughness, and less than desirable product texture as compared to animal meat benchmarks. On the other hand, pea proteins with less cold water solubility and higher propensity for heat gelation led to products with more laminated surface layer, and higher cutting test and texture profile analysis response. These relationships will be useful for plant-based meat manufacturers to better tailor their products and choice of ingredients.

3.
J Imaging Inform Med ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528289

ABSTRACT

Depth of focus (DOF) is defined as the axial range in which the specimen stage moves without losing focus while the imaging apparatus remains stable. It may not be possible to capture an image that includes the entire specimen in focus due to the narrow DOF in microscopic systems. Extended depth of focus (EDOF) is used to overcome this limitation in microscopic systems. Although the researchers have developed so many EDOF microscope approaches, this research field still has some crucial shortcomings such as high computational costs, complexity and execution time, requiring additional equipment, low precise characterization of curves, and edges in images, varying performance depending on the specimen and microscope, using only gray levels of input images to acquire the pixel's focus values. In order to minimize these shortcomings and comprehensively analyze the performance of EDOF approaches, a novel multi-focus image data set is generated, and a deep learning-based EDOF microscope approach is proposed in this study. When compared with the state-of-art EDOF approaches, our study provides various crucial contributions such as the first EDOF approach based on unsupervised deep learning, providing more accurate and specimen-free EDOF, generating a novel multi-focus image data, not requiring any pre- or post-processing technique and acquiring the pixel's focus degrees using deep features. In order to evaluate the effectiveness of the suggested approach, 20 different EDOF approaches are applied to a multi-focus image data set containing 9 image collections (4 synthetic and 5 microscope image collections) in total. Performance analysis metrics with and without requiring a reference image are preferred to identify which EDOF microscope approach can extract more essential details from the multi-focus images for the synthetic and microscope image collections, which are Root Mean Square Error (RMSE), Peak Signal Noise Ratio (PSNR), Universal Quality Index (UQI), Correlation Coefficient (CC), Perception-based Image Quality Evaluator (PIQE), Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), Extension of Universal Quality Index for N Images (UQIN), and Naturalness Image Quality Evaluator (NIQE). Objective and subjective analysis of this study demonstrates that unsupervised deep learning model is more efficient to transmit crucial details from multi-focus images. Moreover, the suggested EDOF microscope approach with highest PSNR, UQI, CC, UQIN and lowest RMSE, PIQE, BRISQUE, NIQE produces higher performance than the state-of-art approaches.

4.
Foods ; 12(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38137228

ABSTRACT

Cholesterol (C27H46O) is a lipid-derived substance found in lipoproteins and cell membranes. It is also one of the main sources for the production of bile acids, vitamin D, and steroid hormones. Today, foods are evaluated by consumers not only according to their taste and nutritional content but also according to their effects on consumer health. For example, many consumers choose foods according to their cholesterol level. The cholesterol in the food can directly affect the blood cholesterol level when consumed, which can lead to cardiovascular diseases. High levels of cholesterol can lead to diet-related human diseases such as cardiac arrest, paralysis, type II diabetes, and cerebral hemorrhage. In societies with high living standards, interest in and consumption of foods that lower or have low cholesterol levels have increased recently. Accordingly, efforts to increase the variety of foods with reduced cholesterol levels are on the rise. This has indirectly led to the accurate measurement of cholesterol levels in blood and food being of great importance. Classical chemical, enzymatic, colorimetric, polarographic, chromatographic, and spectrophotometric methods; enzymatic, nonenzymatic, and electrochemical sensors; and biosensors are used for the determination of cholesterol in foods. The purpose of this review is to reveal and explore current and future trends in cholesterol detection methods in foods. This review will summarize the most appropriate and standard methods for measuring cholesterol in biological components and foods.

5.
Foods ; 12(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37685165

ABSTRACT

A greater understanding of protein functionality and its impact on processing and end-product quality is critical for the success of the fast-growing market for plant-based meat products. In this research, simple criteria were developed for categorizing plant proteins derived from soy, yellow pea, and wheat as cold swelling (CS) or heat swelling (HS) through various raw-material tests, including the water absorption index (WAI), least gelation concentration (LGC), rapid visco analysis (RVA), and % protein solubility. These proteins were blended together in different cold-swelling: heat-swelling ratios (0:100 to 90:10 or 0-90% CS) and extruded to obtain texturized vegetable proteins (TVPs). In general, the WAI (2.51-5.61 g/g) and protein solubility (20-46%) showed an increasing trend, while the LGC decreased from 17-18% to 14-15% with an increase in the % CS in raw protein blends. Blends with high CS (60-90%) showed a clear RVA cold viscosity peak, while low-CS (0-40%) blends exhibited minimal swelling. The extrusion-specific mechanical energy for low-CS blends (average 930 kJ/kg) and high-CS blends (average 949 kJ/kg) was similar, even though both were processed with similar in-barrel moisture, but the former had substantially lower protein content (69.7 versus 76.6%). Extrusion led to the aggregation of proteins in all treatments, as seen from the SDS-PAGE and SEC-HPLC analyses, but the protein solubility decreased the most for the high-CS (60-90%) blends as compared to the low-CS (0-40%) blends. This indicated a higher degree of crosslinking due to extrusion for high CS, which, in turn, resulted in a lower extruded TVP bulk density and higher water-holding capacity (average 187 g/L and 4.2 g/g, respectively) as compared to the low-CS treatments (average 226 g/L and 2.9 g/g, respectively). These trends matched with the densely layered microstructure of TVP with low CS and an increase in pores and a spongier structure for high CS, as observed using optical microscopy. The microstructure, bulk density, and WHC observations corresponded well with texture-profile-analysis (TPA) hardness of TVP patties, which decreased from 6949 to 3649 g with an increase in CS from 0 to 90%. The consumer test overall-liking scores (9-point hedonic scale) for TVP patties were significantly lower (3.8-5.1) as compared to beef hamburgers (7.6) (p < 0.05). The data indicated that an improvement in both the texture and flavor of the former might result in a better sensory profile and greater acceptance.

6.
Foods ; 12(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37238896

ABSTRACT

The flour functionality and particle size distribution of wheat flour obtained on roller milling are dependent on the type of wheat, tempering conditions, and milling conditions. In this study, the impact of the tempering conditions (moisture and time) on the chemical and rheological properties of flour from blends of hard red wheat were analyzed. The wheat blends B1-25:75 (hard red spring (HRS)/hard red winter (HRW)), B2-50:50, and B3-75:25, which were tempered to 14%, 16%, and 18% for 16, 20, and 24 h, respectively, were milled using a laboratory-scale roller mill (Buhler MLU-202). Protein, damaged starch, and particle characteristics were influenced by blending, tempering, and milling streams. For all the blends, the protein content varied significantly among the break flour streams; the damaged starch content varied greatly in the reduction streams. The increased damaged starch content of the reduction streams proportionally increased water absorption (WA). Higher proportions of HRS in the blends significantly decreased the pasting temperature of the dough, as measured using Mixolab. Principal component analysis proved that the protein content was the key determinant in particle characteristics, WA, and pasting properties of the flour, especially in blends with a higher proportion of HRS.

7.
Foods ; 12(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37107382

ABSTRACT

Four commercial pea protein isolates were analyzed for their physico-chemical properties including water absorption capacity (WAC), least gelation concentration (LGC), rapid visco analyzer (RVA) pasting, differential scanning calorimetry (DSC)-based heat-induced denaturation and phase transition (PTA) flow temperature. The proteins were also extruded using pilot-scale twin-screw extrusion with relatively low process moisture to create texturized plant-based meat analog products. Wheat-gluten- and soy-protein-based formulations were similarly analyzed, with the intent to study difference between protein types (pea, wheat and soy). Proteins with a high WAC also had cold-swelling properties, high LGC, low PTA flow temperature and were most soluble in non-reducing SDS-PAGE. These proteins had the highest cross-linking potential, required the least specific mechanical energy during extrusion and led to a porous and less layered texturized internal structure. The formulation containing soy protein isolate and most pea proteins were in this category, although there were notable differences within the latter depending on the commercial source. On the other hand, soy-protein-concentrate- and wheat-gluten-based formulations had almost contrary functional properties and extrusion characteristics, with a dense, layered extrudate structure due to their heat-swelling and/or low cold-swelling characteristics. The textural properties (hardness, chewiness and springiness) of the hydrated ground product and patties also varied depending on protein functionality. With a plethora of plant protein options for texturization, understanding and relating the differences in raw material properties to the corresponding extruded product quality can help tailor formulations and accelerate the development and design of plant-based meat with the desired textural qualities.

8.
Mol Biol Rep ; 50(5): 4187-4192, 2023 May.
Article in English | MEDLINE | ID: mdl-36899280

ABSTRACT

BACKGROUND: In medicinal plants, selection, reproduction and preservation of important genotypes are very necessary. Nowadays, using tissue culture and regeneration techniques of medicinal plants under in vitro conditions has been able to proliferate medicinal plants widely, which is much higher than traditional methods of vegetative propagation. Maca (Lepidium meyenii), is an industrial plant whose root is the usable part. Maca has valuable medicinal effects such as sexual enhancement and reproductive power, infertility treatment, improved sperm count and quality, anti-stress, osteoporosis prevention and more. METHODS AND RESULTS: This study was conducted to induce callus and regeneration of Maca. First, MS medium supplemented with different concentrations of Kinetin, Naphthaleneacetic acid and 2,4-Dichlorophenoxyacetic acid [0.5, 1 and 2 µM respectively] and control were compared for callus induction from root and leaves. After 38 days of incubation, the first callus appeared, after 50 days of callus induction and after 79 days regeneration occurred. The callus induction experiment was performed for the study of the effect of three explants (leaf, stem and root) and seven hormone levels. The regeneration experiment was carried out by studying the effect of three explants (leaf, stem and root) on eight levels of the hormone. The results of data analysis on callus induction showed that the effects of explants, hormones and their interactions on callus induction percentage were highly significant but not significant on callus growth rate. The results of regression analysis showed that explants, hormones and their interactions had no significant effect on regeneration percentage. CONCLUSION: Based on our results, the best medium for inducing callus was Hormone 2,4-D [2 µM] and Kinetin [0.5 µM], in which the highest percentage of callus induction was in leaf explants (62%). And the lowest were in stem (30%) and root (27%) explants. According to the comparison of the mean, the best environment for regeneration of the environment was 4 µM 6-Benzylaminopurine 2.5 + Thidiazuron, in which the highest percentage of regeneration was in leaf explant (87%) and stem (69%) and the lowest in root explant (12). %).


Subject(s)
Lepidium , Plants, Medicinal , Kinetin/pharmacology , Plant Growth Regulators/pharmacology , Seeds , Hormones
9.
J Food Sci ; 88(1): 57-71, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36514236

ABSTRACT

The overall objective of this study was to understand texturization of pea protein isolate (PPI) using low moisture extrusion, and investigate protein interactions, functionality, and cross-linking with the inclusion of different levels of pea fiber (5-15%) and different types of starch-containing legume flours (20% chickpea flour or pea flour). PPI/ legume flour raw formulations had 18-27% lower water absorption capacity (WAC) as compared to the PPI control. However, WAC increased by 8-16% with the addition of pea fiber to a PPI/ legume flour control. Rapid Visco Analysis trends mirrored these results with peak viscosity shifting to higher temperatures with the addition of legume flour and lower temperatures with the addition of pea fiber. The role of starch in interfering with protein hydrophilic interactions and that of fiber in decoupling this effect were discussed. These interactions determined extruded textured protein properties, with more layering and denser products (174-229% higher bulk density as compared to control) observed with the addition of legume flours leading to lower water hydration capacity (WHC), as opposed to more cellular and porous microstructure (55-58% lower bulk density as compared to control) with the addition of fiber. Bulk density and WHC trends due to these porosity and layering effects impacted the instrumental texture characteristics of ground hydrated product, including hardness that increased from 475 g to 837-2334 g with the higher layering caused by starch, but decreased from 1295 g to 534-1050 g due to the porosity induced by fiber. To summarize, the use of legume flours and fiber can allow flexibility in targeting specific qualities while reducing costs and increasing sustainability of plant-based meats. PRACTICAL APPLICATION: Health, environment, and animal welfare concerns are creating a growing movement toward plant-based meat. Pea protein isolate and concentrate have become popular ingredients for texturized plant protein. Understanding of the role of starch and fiber in the structuring of textured pea protein could lead to use of legume flours and co-products of protein isolation to reduce cost and increase sustainability and nutrition of meat alternatives while targeting desired textural attributes.


Subject(s)
Fabaceae , Pea Proteins , Flour/analysis , Vegetables , Starch , Meat/analysis , Water/analysis
10.
Foods ; 10(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681555

ABSTRACT

Hydrocolloids are commonly used in canned pet food. However, their functional effects have not been quantified in this food format. The objective was to determine the effects of select hydrocolloids on batter consistency, heat penetration, and texture of canned pet food. Treatments were added to the formula as 1% dextrose (D) and 0.5% guar gum with 0.5% of either dextrose (DG), kappa carrageenan (KCG), locust bean gum (LBG), or xanthan gum (XGG). Data were analyzed as a 1-way ANOVA with batch as a random effect and separated by Fisher's LSD at p < 0.05. Batter consistency (distance traveled in 30 s) thickened with increasing levels of hydrocolloids (thinnest to thickest: 23.63 to 2.75 cm). The D treatment (12.08 min) accumulated greater lethality during the heating cycle compared to all others (average 9.09 min). The KCG treatment (27.00 N) was the firmest and D and DG (average 8.75 N) the softest with LBG and XGG (average 15.59 N) intermediate. Toughness was similar except D (67 N·mm) was less tough than DG (117 N·mm). The D treatment showed the greatest expressible moisture (49.91%), LBG and XGG the lowest (average 16.54%), and DG and KCG intermediate (average 25.26%). Hydrocolloids influenced heat penetration, likely due to differences in batter consistency, and affected finished product texture.

11.
Foods ; 10(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34441724

ABSTRACT

The effects of room temperature water, hot water, and steam tempering methods were investigated on sorghum kernel physical properties, milling, flour, and bread-making properties. Overall tempering condition and tempering moisture content were found to have a significant effect on the physical properties. Milling properties were evaluated using a laboratory-scale roller milling flowsheet consisting of four break rolls and eight reduction rolls. Room temperature tempering (18% moisture for 24 h) led to better separation of bran and endosperm without negatively impacting flour quality characteristics i.e., particle size distribution, flour yield, protein, ash, damaged starch, and moisture content. Bread produced from the flour obtained from milling sorghum kernels tempered with room temperature water (18% m.c for 24 h) and hot water (16% m.c at 60 °C for 18 h) displayed better bread-making properties i.e., high firmness, resilience, volume index, higher number of cells, and thinner cell walls when compared to other tempering conditions. Room temperature water tempering treatment (18% m.c for 24 h) could be a better pretreatment process for milling white sorghum kernels without negatively impacting the flour and bread-making quality characteristics.

12.
Comput Methods Programs Biomed ; 207: 106141, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34020373

ABSTRACT

BACKGROUND AND OBJECTIVE: The size, shape, and position of the pancreas are affected by the patient characteristics such as age, sex, adiposity. Owing to more complex anatomical structures (size, shape, and position) of the pancreas, specialists have some difficulties in the analysis of pancreatic diseases (diabetes, pancreatic cancer, pancreatitis). Therefore, the treatment of the disease requires enormous time and depends on the experience of specialists. In order to decrease the rate of pancreatic disease deaths and to assist the specialist in the analysis of pancreatic diseases, automatic pancreas segmentation techniques have been actively developed in the research article for many years. METHODS: Although the rapid growth of deep learning and proving satisfactory performance in many medical image processing and computer vision applications, the maximum Dice Similarity Coefficients (DSC) value of these techniques related to automatic pancreas segmentation is only around 85% due to complex structure of the pancreas and other factors. Contrary to previous techniques which are required significantly higher computational power and memory, this paper suggests a novel two-phase approach for high-accuracy automatic pancreas segmentation in computed tomography (CT) imaging. The proposed approach consists of two phases; (1) Pancreas Localization, where the rough pancreas position is detected on the 2D CT slice by adopting Mask R-CNN model, (2) Pancreas Segmentation, where the segmented pancreas region is produced by refining the candidate pancreas region with 3D U-Net on the 2D sub-CT slices generated in the first phase. Both qualitative and quantitative assessments of the proposed approach are performed on the NIH data set. RESULTS: In order to evaluate the achievement of the recommended approach, a total of 16 different automatic pancreas segmentation techniques reported in the literature are compared by utilizing performance assessment procedures which are Dice Similarity Coefficient (DSC), Jaccard Index (JI), Precision (PRE), Recall (REC), Pixel Accuracy (ACC), Specificity (SPE), Receiver Operating Characteristics (ROC) and Area under ROC curve (AUC). The average values of DSC, JI, REC and ACC are computed as 86.15%, 75.93%, 86.27%, 86.27% and 99.95% respectively, which are the best values among well-established studies for automatic pancreas segmentation. CONCLUSION: It is demonstrated with qualitative and quantitative results that our suggested two-phase approach creates more favorable results than other existing approaches.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Pancreas/diagnostic imaging
13.
Carbohydr Polym ; 253: 117259, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33278941

ABSTRACT

The objectives of this study were to study the extrusion of cross-linked waxy maize starches (CLWMS) with different cross-linking levels and their function as a secondary ingredient in extruded oat flour (OF) formulations. CLWMS (18 %) and OF (82 %) were hydrated to 20 % moisture content and subjected to twin-screw extrusion at the screw speed of 350 rpm. Low cross-linking level of CLWMS (0.05 % sodium trimetaphosphate/sodium tripolyphosphate) in OF formulation increased the void fraction and reduced the breaking strength of extrudates. The low cross-linked starch was more resistant to breakdown and had a higher pasting viscosity than the unmodified starch. Higher cross-linking levels of CLWMS restricted swelling of starch granule and increased the resistant starch level of OF formulation but had very poor structural and textural properties. Varying the level of cross-linking offers an alternative way to manipulate the structural, textural and nutritional properties of extrudates in snack and cereal applications.

14.
Transl Anim Sci ; 4(4): txaa185, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33241189

ABSTRACT

Cellulose and beet pulp have been commonly used in the pet food industry to increase the dietary fiber content of cat foods. However, pet food companies seek alternatives to these so-called byproducts. Miscanthus grass is grown for its fiber content and may serve as an alternative to traditional fibrous ingredients. The objectives of this study were to determine the effects of fiber sources on extrusion processing and kibble structure of cat foods. Three replicate batches of a complete and balanced foods for adult cats at maintenance each containing 10% of Miscanthus grass, cellulose, or beet pulp was mixed and kibbles were produced on a single-screw extruder. Feed rate, preconditioner water and steam, extruder screw speed, extruder water and steam addition, and knife speed were adjusted to achieve a wet bulk density of 330 g/L. After extrusion, kibbles were dried at 115.5 ºC to less than 10% moisture. Dried kibbles were coated with chicken fat and flavor enhancer. No effects due to fiber source were reported for extrusion parameters or kibble measurements (P > 0.05) with the exception of compression energy, wherein kibbles produced with cellulose required more energy to compress than those containing beet pulp (6,917 N mm vs. 3,591 N mm, respectively). In conclusion, tested fiber sources had no impact on extrusion parameters and most kibble characteristics. Kibbles containing cellulose required more energy to compress than kibbles containing beet pulp. Miscanthus grass could be used as an alternative to traditional fiber sources used to produce cat foods.

15.
Eur J Cell Biol ; 99(2-3): 151070, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32005345

ABSTRACT

Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.


Subject(s)
Breast Neoplasms/genetics , Cysteine-Rich Protein 61/genetics , Receptor, Notch1/genetics , Breast Neoplasms/pathology , Female , Humans , Signal Transduction
16.
J Econ Entomol ; 104(1): 325-30, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404874

ABSTRACT

The susceptibility of various life stages of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), a pest of stored wheat, Triticum aestivum L., to flameless catalytic infrared radiation in the 3-7-microm range was evaluated in the laboratory. Immature stages were collected from flour infested with T. castaneum adults only for 1 d. Stages collected after 1 d represented eggs (collected on day 0); those collected after 7, 14, and 21 d from day 0 represented larvae in different developmental stages, whereas those collected after 24 d represented pupae. Adults (2 wk old) were collected after 42 d. Each of these stages was exposed for 45 or 60 s in 113.5 or 227.0 g of wheat at a distance of 8.0 or 12.7 cm from a bench top infrared emitter. The mean temperatures attained during exposures were measured continuously using a noncontact infrared thermometer connected to a computer. The mean grain temperatures attained increased with an increase in exposure time and were inversely related to distance from the emitter. Grain quantity least influenced mean temperatures attained. Pupae were the least susceptible stage and larvae collected after 7 d were the most susceptible stage. Variation in probability of death of various life stages decreased with an increase in mean grain temperatures attained. All life stages were killed after a 60-s exposure at a distance of 8.0 cm from the emitter in 113.5 g of wheat, where the mean +/- SE temperatures attained ranged from 107.6 +/- 1.2 to 111.4 +/- 0.5 degrees C. Our laboratory results using small grain quantities and short exposure times showed that flameless catalytic infrared radiation can be a valuable tool for managing insects in stored organic and nonorganic wheat.


Subject(s)
Hot Temperature , Infrared Rays , Insect Control/methods , Tribolium/radiation effects , Animals , Food Parasitology , Life Cycle Stages/radiation effects , Triticum/parasitology
17.
J Agric Food Chem ; 59(5): 1498-507, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21306105

ABSTRACT

This paper focuses on understanding the role of structural parameters and starch crystallization on the toughness of cake samples. Accurate mechanical measurements were performed to obtain toughness values, and these were related to structural parameters obtained from image analyses. Three-dimensional skeletons of food samples were generated by using X-ray tomography technique. The structural parameters (cell diameter, cell wall thickness, thickness to radius ratio (t/R), fragmentation index) were obtained after processing of the images with CTan software. The basic hypothesis of the paper is to show that the structural parameter t/R is a determinant for predicting toughness, which is a critical indicator of freshness. Freshness in cakes and other baked products is a leading factor in consumer perception. For this purpose three different cake formulations were stored at 37 and 50 °C. Cycling from these temperatures to lower storage temperatures of 25 and 4 °C was done to accelerate the starch retrogradation rate. Experimental results indicated that there was a strong interrelationship between morphological structure and the mechanical properties with regression coefficients of 0.68 and 0.95. Starch retrogradation, which was followed by X-ray diffractometry, was found to be directly proportional to toughness values, where the percent relative crystallinity increased with storage temperature.


Subject(s)
Food , Sensation , Starch/chemistry , Crystallization , Food Handling/methods , Food Technology/methods , Humans , Mechanical Phenomena , Porosity , X-Ray Diffraction
18.
J Craniofac Surg ; 21(6): 1843-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21119437

ABSTRACT

In reconstructive surgery, many autograft/allograft/xenograft and synthetic materials are being used for repairing congenital or acquired tissue and skeletal deformities. Compatibility of the graft or the material to the tissue, the risk or rejection, toxicity, and morbidity affect the preference. With the aim of searching the usability of human cadaver nail being used as xenograft instead of cartilage graft on small and composite defects, 60 rats were separated into 3 groups, each of which was composed of 20 rats. One hundred twenty nail samples of 1 × 1-cm size, whose epithelium tissue was shaved 2-sided, were prepared for the purpose of placing 2 of them into the back of rats. They were placed under the dorsal skin of rats as naked in the first group, as fascia-wrapped in the second group, and as amnion membrane-wrapped in the third group. It has been stated as a result of the pathologic surveys performed in 2, 4, 12, and 24 weeks from rats in all groups that all the nails were available; acute and chronic inflammatory signs that were observed in early stages regressed, and in late stages, histopathologic signs of all groups were similar. Nail has some advantages such as being cost-effective, being easy to obtain, and having less rejection risk for being composed of dead cells. Application of nail xenograft eroded 2-sided can be taken into account instead of cartilage graft in small-size areas needing support tissue.


Subject(s)
Nails/transplantation , Plastic Surgery Procedures/methods , Transplantation, Heterologous , Amnion/transplantation , Animals , Biocompatible Materials , Connective Tissue/pathology , Dermatologic Surgical Procedures , Eosinophils/pathology , Fascia/transplantation , Giant Cells, Foreign-Body/pathology , Histiocytes/pathology , Humans , Keratinocytes/cytology , Lymphocytes/pathology , Male , Neutrophils/pathology , Rats , Rats, Sprague-Dawley , Time Factors
19.
Appl Spectrosc ; 64(12): 1320-4, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21144147

ABSTRACT

In the dry milling of wheat flour, each unit process (roller mill, purifier, sifter, etc.) produces a mixture with varying amounts of wheat endosperm and non-endosperm byproducts. Chemical images with 82 000 pixels of each intermediate product stream issuing from an individual processing machine are readily analyzed in terms of the relative amount of endosperm and non-endosperm. Approximately three minutes is required to produce an image of each intermediate product stream. Applying partial least squares (PLS) chemometric software to identify individual pixels, which enables calculation of the relative amount of endosperm and non-endosperm, is not a time-limiting factor. When relative flow rates are known for each stream, mass balance can be calculated from each intermediate stream in terms of the product (endosperm content) and the lower value non-endosperm byproduct. Data is presented from a purifier in a commercial flour mill. Intermediate streams collected from a run with optimized operational parameters were compared to those of another run before adjustment. The endosperm (product) mass balance profile for each run enabled assessment of operational efficiency. The devised chemical imaging analysis system would be particularly useful in commissioning of a new mill or to optimize existing wheat milling systems. Also, when raw material differs from that for which previous optimization was established, a new optimization may be in order. The ability to acquire a large number of spectra from a specimen and apply multivariate statistics to identify each pixel and subsequently count pixels accommodates heterogeneity and reports the results from averaging a very large number of individual spectra. A second illustration of the utility of the imaging method is presented centering on streams from the first and second break unit operations at the beginning of the roller mill process.


Subject(s)
Endosperm/chemistry , Flour/analysis , Food Handling/methods , Spectroscopy, Near-Infrared/methods , Triticum/chemistry , Least-Squares Analysis
20.
J Econ Entomol ; 103(4): 1508-16, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20857767

ABSTRACT

In laboratory experiments, a flameless catalytic infrared emitter, fueled by propane, was used to disinfest hard red winter wheat, Triticum aestivum L., containing different life stages of the lesser grain borer, Rhyzopertha dominica (F.), an economically important insect species associated with stored wheat in Kansas. The emitter generates infrared radiation in the 3-7-microm range. The life stages of R. dominica exposed to infrared radiation included eggs, larvae in different stages of development, pupae, and 2-wk-old adults. A noncontact infrared thermometer measured grain temperatures continuously during exposures of infested wheat to infrared radiation. The grain temperatures attained were influenced by wheat quantity; distance from the emitter; and exposure time, which in turn influenced effectiveness against various life stages of H. dominica. In general, higher grain temperatures were attained in 113.5 g of wheat as opposed to 227.0 g, and at 8.0 cm from the emitter surface rather than at 12.7 cm, and during a 60-s exposure compared with a 45-s exposure. Logistic regression indicated the probability of death of various life stages of R. dominica was temperature dependent. The log odds ratios showed old larvae were less susceptible to infrared radiation than young larvae. Approximately > or = 94% mortality of all R. dominica life stages occurred when using 113.5 g of wheat, exposed for 60 s at a distance of 8.0 cm from the emitter, resulting in mean +/- SE wheat temperatures that ranged between 107.6 +/- 1.4 and 113.5 +/- 0.5 degrees C. Our results with small grain quantities show flameless catalytic infrared technology to be a promising tool for disinfestation of stored wheat.


Subject(s)
Coleoptera/physiology , Infrared Rays , Insect Control/methods , Animals , Food Contamination , Life Cycle Stages , Seeds , Triticum/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...